
Gomtuu Build System

User’s Guide

March 2020

This guide describes how to setup and use the Gomtuu Build System to build
collections of software packages.

status

Draft

ii

Copyright c©2014-2020 Arthur Rinkel

This document and its sources are released under the terms of the GNU General Public
License Version 2 (GNU GPLv2) as published by the Free Software Foundation. You
should have received a copy of the GNU General Public License along with this
document. If not, view a copy of the License here:
http://www.gnu.org/licenses/gpl-2.0.html.

This document was prepared using LATEX2ε.

Contents

Preface ix

1 Introduction 1

1.1 Goal . 1

1.2 Build Process . 1

1.3 Build Program . 3

2 Setting up the Build System 5

3 Defining a New Software Set 9

3.1 Creating a Software Set . 9

3.1.1 Software Set Settings . 10

3.1.2 Toolchain Definitions . 12

3.1.3 Software Set Prerequisites . 13

3.2 Populating a Software Set . 14

3.2.1 Software Package Settings . 15

3.3 Copying a Software Set . 17

4 Generating Software Set Contents 19

5 Creating a Software Set Image 21

6 Software Set Maintenance 25

6.1 Retrieving Information . 25

6.1.1 list Command . 25

6.1.2 pref Command . 29

6.2 Editing Configurations . 29

6.3 Cleaning . 30

6.4 Removing Configurations . 30

7 Customizing the Build 33

7.1 Software Set Directory Structure . 33

7.2 Build Phase Scripts . 36

7.3 Init Phase Scripts . 40

iii

iv CONTENTS

7.4 Finalize Phase Scripts . 41
7.5 Clean Phase Scripts . 41
7.6 Replacing Default Build Phase Scripts . 42

A Usage of Executables 43

A.1 gbs . 43
A.2 gbsswim . 44

B Default Build Phase Scripts 45

B.1 Import Script . 45
B.2 Patch Script . 46
B.3 Configure Script . 46
B.4 Build Script . 47
B.5 Test Script . 47
B.6 Install Script . 47
B.7 Deploy Script . 47

C Default Clean Phase Scripts 49

C.1 Clean Script . 49

D Build Environment 51

D.1 Support Scripts . 51
D.1.1 Shell Environment . 51
D.1.2 File Patching . 52
D.1.3 Package Handling . 52

D.2 Environment Variables . 53

E MRO Identifiers 57

F Examples 61

F.1 AS800 . 62
F.2 SWSET-1 . 68
F.3 SWSET-2 . 71
F.4 SWSET-3A . 75
F.5 SWSET-3B . 78

List of Tables

2.1 LOG Setting Values . 6

3.1 Image Tool Format Specifiers . 11

3.2 Extract Tool Format Specifiers . 12

6.1 Output Software Set List . 26

6.2 Output Software Set Details . 26

6.3 Output Package Details . 28

7.1 Build Phase Script Names . 36

7.2 Shell Script Exit Codes . 36

7.3 Build Script run-parts . 37

7.4 Install Script run-parts . 38

7.5 Deploy Script run-parts . 39

7.6 Init Script Copying sys-root . 40

7.7 Finalize Script 99_done.sh . 41

7.8 Clean Phase Script Names . 41

7.9 Clean Script run-parts . 42

D.1 Shell Variables . 51

D.2 Shell Functions . 51

D.3 File Patching Functions . 52

D.4 Package Handling Functions . 53

D.5 Environment Variables GBS Executable 53

D.6 Environment Variables Build Phase Scripts 54

D.7 Environment Variables Init Phase Scripts 54

D.8 Environment Variables Finalize Phase Scripts 55

D.9 Environment Variables Clean Phase Scripts 56

E.1 GBS Version Output . 57

E.2 GBS Preferences Output . 57

E.3 Software Set Overview Output . 58

E.4 Software Set Details Output . 58

E.5 Package Details Output . 59

v

vi LIST OF TABLES

List of Figures

5.1 Software Set Build Flow . 23

7.1 Software Set Directory Layout . 35

vii

viii LIST OF FIGURES

Preface

This document describes how to setup and use the Gomtuu Build System to create your
own Software Sets from a collection of software packages. The installation of the program
is not covered by this manual, refer to the INSTALL file elsewhere in this distribution for
further information on that topic.

ix

x PREFACE

Chapter 1

Introduction

1.1 Goal

GBS came into being by the desire to automate the build procedure of a so-called
“LinuxFromScratch” system for my Alpha machines. Manually building on older Al-
pha machines takes a lot of time and duplicating a configuration to another machine is
cumbersome. With GBS I’ve tried to create a build system which solves these issues
while still remain simple, lightweight, and preferrably architecture-independent. The
starting-point of GBS is that every software package has its own way of building. Many
packages however, use the same build method so GBS provides default behaviour. The
end-user is free to replace parts of the default behaviour to fit his own needs.

1.2 Build Process

The build process of GBS is essentially the build of one or more software packages for
a given target system with some pre- and post-operations added. The end-result is
an “installation area” for the target system which can then be copied to the target or
packaged into an archive file for further distribution. By itself, GBS doesn’t build any
software packages, it merely triggers the build system of each individual software package.
The package may have a build system of its own — most packages do — or a custom
build system which is added by the end-user.

When a number of software packages are grouped together for a specific purpose
then this is referred to as a Software Set. For example, software packages providing core
system functionality could be grouped into a “Base O/S” Software Set. Using Software
Sets is however not optional. Every software package you want to build for a given target
system must be part of a Software Set.

Before the build of a Software Set begins, GBS allows some preparations to be made
during the so-called init phase. Typically, this phase creates a directory hierarchy for
the target installation (i.e., the “rootfs” of the target system), or copies specific files to
the target installation needed for the build. The Init phase consist of 1 step (see below)
and is always user-defined (i.e., the build system does not implement default behaviour).

1

2 CHAPTER 1. INTRODUCTION

0. Init – initializing software set

The actual build of a package is divided into a number of build phases. These phases
cover everything from retrieving a package to their final integration on the target instal-
lation. There are 7 different build phases, numbered from 0 to 6, which are executed in
ascending order when a package is being built. GBS implements default behaviour for all
build phases except 6 (Deploy). Although this phase has a specific purpose, the default
behaviour is a NOP (no-operation).

0. Import – transfer package sources to build system

1. Patch – apply changes/fixes to package sources

2. Configure – configuring package

3. Build – compiling package

4. Test – validating build

5. Install – transfer package to target installation

6. Deploy – setup package on target installation

For each package GBS builds, it sequentially runs through the above build phases.
In case some fatal error occurs, the entire build is terminated prematurely.

After all packages of a Software Set have been built, GBS runs through one last phase,
which is the finalize phase (see below). As with the Init phase, this phase also consist
of 1 step and is also user-defined. The Finalize phase allows some last operations to be
performed such as straightening out file permissions and ownership.

0. Finalize – finalizing software set

Contrary to the phases mentioned above, the build system also defines a clean phase
for removing “build objects” generated during the build. The build system implements
default behaviour for this phase.

0. Clean – remove build objects of package

In order to generate code for a target system, GBS uses a toolchain. Toolchains are
however not an integral part of the build system, so the end-user has to set this up by
himself for the appropriate target system(s). Which toolchain is used for a Software Set
is determine at the time of its creation (see Chapter 3).

1.3. BUILD PROGRAM 3

1.3 Build Program

The main program of the build system is the executable gbs which should be located
in the system’s search paths. Executing gbs without any parameters causes a help text
to be output. This shows the commands available for creating, building, or cleaning
Software Sets. The syntax of gbs is:

gbs [COMMAND [PARAMETER]...]

Almost all commands require a Software Set to operate on, and this is specified as
a parameter on the command line. Which parameter, and how many parameters are
needed depends on the command. The order in which a command and its parameter(s)
are specified on the command line is irrelevant. See Appendix A for the help text output
or run gbs and specify your first command:

gbs help

4 CHAPTER 1. INTRODUCTION

Chapter 2

Setting up the Build System

In order to create Software Sets, GBS needs directory paths where Software Set configu-
rations and “build objects” can be found or stored. In addition, there are some settings
which control the behaviour of the build system while it’s operating. There are builtin
default values which may suffice, but you may want to override them on a system-wide
basis or on an individual basis. The system-wide settings are stored in the file

<prefix>/etc/gbs.conf

where <prefix> denotes the installation prefix of GBS. A regular user can put his
preferences in his home directory:

<home>/.gbs_conf

where <home> is the home directory of the user. Both of these files may contain
definitions for the same settings, and in such a case the user-defined definition will over-
ride the system-wide definition, which in turn overrides the builtin default. Note that
this only applies to the settings that you actually redefine, so you only need to put the
settings you want to change in your .gbs_conf file or in the system-wide gbs.conf file.

Following is an enumeration of the settings recognized by GBS along with their builtin
default value (in parenthesis). The setting identifiers are case-sensitive.

• ROOTFS_LEVEL (/var/lib/gbs/rootfs)

Base directory where each Software Set will have its software packages installed,
after they have been built. Each Software Set has its own sub-directory in the base
directory to keep Software Sets apart.

• SOURCE_LEVEL (/usr/src)

Base directory for extracting and building the software packages of a Software Set.
Each Software Set has its own sub-directory in the base directory. For each software
package of the Software Set, another directory is created within the Software Set
directory. Every Software Set has its own copy of package sources.

5

6 CHAPTER 2. SETTING UP THE BUILD SYSTEM

• CONFIG_LEVEL (/var/lib/gbs/swset)

Base directory which contains the configuration of a Software Set. A sub-directory
for the Software Set is created in the base directory. The configuration of a Software
Set includes a list of software packages contained in the Software Set as well as
definitions on how to build each package. Optionally, there may be (static) files
or additional instructions present which are needed while the Software Set is being
created. The CONFIG_LEVEL directory typically holds data that can’t be reproduced,
contrary to the ROOTFS_LEVEL directory and the SOURCE_LEVEL directory.

• PACKAGE_LEVEL (ftp://alpha.gomtuu.net/PKG)

This setting lists directories and/or URLs where software packages can be found.
The directories or URLs are separated by whitespace and are processed (i.e., used)
in left-to-right order.

• GBS_OPT (build jobs = #CPUs, log to terminal, clean)

The setting is a list of options, each separated by whitespace, and control some
behaviour of the build system while its running. The following options are recog-
nized:

– JOBS=<n>

Determines the maximum number of jobs running in parallel. What these
jobs comprise is unspecified. This could be building two software packages in
parallel, or compiling multiple source files of the same package in parallel.

– LOG=<output>

Controls where the output of the build phases is sent to. Only the activity of
the build phases can be logged. Other activities, such as cleaning, are usually
echo’ed to stdout. Values for <output> have the following meaning:

Table 2.1: LOG Setting Values

no Mute output
term Send output to terminal
file Send output to file corresponding to build phase
cfile Same as file except log file is compressed afterwards

The values are case-sensitive and default to term if omitted.

If output is sent to file, each build phase is logged to a separate file with the
sequence number of the build phase encoded in the filename. The log files
of a given software package are stored in a hidden directory in the package’s
source directory.

– CLEAN=<yes|no> (no)

This option controls whether or not the build system should remove the build

7

objects of a software package after it has been installed. This operation would
occur immediately after the installation of the package and is useful to conserve
disk space. Note that administrative files such as log files, are never removed
by the CLEAN option.

– MRO=<yes|no> (no)

The MRO option instructs GBS to produce certain output of the build system
in a “machine-readable” format. This means the output is formatted in such a
way that it is easier for external tools to parse it. When enabled, the output
of the build system is affected in two ways: (a) human-readable output is
transformed in machine-readable output, or (b) output is suppressed. The
output that is being transformed is typically configuration-releated output,
while output related to (build) progress is typically suppressed. Note that
output captured during the build phase is controlled by the LOG option, and
is not affected by the MRO option.

Refer to Appendix E for a list of MRO identifiers that GBS may output.

• DEBUG=<yes|no> (no)

This is mainly for debugging purposes as it enables or disables echoing the com-
mands of the build system itself as well as the commands of the shell scripts.

8 CHAPTER 2. SETTING UP THE BUILD SYSTEM

Chapter 3

Defining a New Software Set

GBS has three commands for creating a new Software Set. One of them creates a Software
Set from scratch while the other two use an existing Software Set as a base model.

3.1 Creating a Software Set

Creating a Software Set from scratch is achieved by using the create command of the gbs
program. This command takes the name of the new Software Set and a base directory of
the toolchain to use for building the (future) software packages within the Software Set.
The syntax of the create command is as follows:

create S=<swset_name> {R=<toolchain_dir> | P=<pkg_name>}

The name of the Software Set has a limitted range of allowable characters. The
characters allowed are: capitals, digits, underscore, and minus sign. The minus sign,
however, cannot appear as the first character of the Software Set name.

As an example, here’s how I create a Software Set for an AlphaServer 800 system of
mine which uses an Alpha EV56 microprocessor.

gbs create S=AS800 \

R=/opt/toolchains/alphaev56-gomtuu-linux-gnu

This will create a sub-directory AS800 in the CONFIG_LEVEL directory. In addition,
two files will be created in the AS800 directory: Defines.mk and Toolchain.mk. The first
contains some administrative settings like a description for the Software Set, or how to log
the build output. This file may need some manual adjustment (see Section 3.1.1). The
Toolchain.mk file holds the settings for the toolchain being used and does not need any
adjustment, usually. Both of these files use Makefile syntax, but it’s recommended to
limit variable definitions to simple substitutions. Comments can be introduced by a line
starting with a ‘#’ sign, while the ‘\<newline>’ sequence indicates a line-continuation.

9

10 CHAPTER 3. DEFINING A NEW SOFTWARE SET

3.1.1 Software Set Settings

The administrative settings of a Software Set in the file Defines.mk, may be edited by
hand when the build system is not operating on the Software Set. Although editing the
file while GBS is operating on a Software Set is harmless, modifications will not be picked
up until the next time GBS is run since the file is only read once. The following settings
are recognized for the Defines.mk file.

• SWSET_ID

An ID used to discriminate the Software Set from others wherever needed. For
example, the Software Set ID is used in the name of the manifest file of the Software
Set.

• SWSET_VER

Version number for this Software Set configuration. The numbering scheme is
user-defined.

• SWSET_DESC

Description for this Software Set, typically a one-liner.

• SWSET_REF

Name of a Software Set to be referenced for configuration settings in this Software
Set. The name must refer to a non-shadowed Software Set. This option is only
used when creating a shadow copy of a Software Set (see also Section 3.3).

• SWSET_OPT

This setting takes the same options as the GBS_OPT setting defined in Chapter 2.
However, the options of the SWSET_OPT setting take precedence over those of the
GBS_OPT setting. So, this setting allows defining Software Set specific options, but
mind that only listed options overwrite their counterpart in GBS_OPT.

• SWSET_REPO

Defines the location where Software Set images can be stored or retrieved. The
value of this setting can be used in conjunction with the IMAGE_CMD or EXTRACT_CMD
setting by means of a format specifier. Use of the SWSET_REPO setting is optional
and offered as a convenience to the end-user.

• SWSET_PRQ

This setting defines a list of prerequisites for the Software Set being build. The
purpose of a prerequisite is to expose certain files which are needed for the current
build. The name of a prerequisite refers to the filename of a Software Set which
has been packaged in an earlier build. Refer to Section 3.1.3 for details on Software
Set prerequisites.

3.1. CREATING A SOFTWARE SET 11

• EXCLUDE

The EXCLUDE setting allows (temporary) exclusion of a package from the build of
a Software Set. The setting holds a whitespace-separated list of package names to
exclude. Apart from being excluded from the build of a Software Set, an excluded
package can neither be built separately by employing the parameter P of GBS.
Refer to Section 6.1 on how to obtain the package names of a Software Set.

Excluding packages may cause the build to fail.

• IMAGE_CMD

If you plan on using GBS to generate an image file of your Software Set, then you
must specify here the command for your image tool. Any switches your image tool
may need can be added as well as a number of format specifiers which GBS will
substitute prior to executing the image tool. Format specifiers that are recognized
are listed in the table below.

Table 3.1: Image Tool Format Specifiers

%D Software Set description†

%L Software Set ID
%I Pathname of image
%R Rootfs directory of Software Set
%T GBS temporary directory
%U Directory holding user-provided files‡

%V Software Set version
%Y Location Software Set repository
† Automatically quoted
‡ In Software Set context

Note that a format specifier such as %V, %L, or %Y can also be replaced by their
respective setting (SWSET_VER, SWSET_ID, and SWSET_REPO). It was however cho-
sen to use a uniform method of substituting values in the IMAGE_CMD setting and
therefore introduce specifiers such as %V.

• IMAGE_FILE

Optional pathname of image file. This setting is directly related to the %I format
specifier of IMAGE_CMD. The build system substitutes the value of IMAGE_FILE for
every %I in the IMAGE_CMD setting. The IMAGE_FILE setting also supports format
specifiers. These are in fact the same as the format specifiers of the IMAGE_CMD

setting. However, the IMAGE_FILE setting is processed before IMAGE_CMD.

If the IMAGE_FILE setting is omitted, the build system formats a default filename
which is then substituted for the %I specifier. The default filename for an image
has the following form:

12 CHAPTER 3. DEFINING A NEW SOFTWARE SET

<swset_id>-<swset_version>

If the %I specifier is not employed, the IMAGE_FILE setting is not needed. In such a
case the image tool is likely to have an alternate method of naming the image file.

• EXTRACT_CMD

If your Software Set has prerequisites then you must specify the command to ex-
tract them. As with the IMAGE_CMD setting, you can use format specifiers for the
EXTRACT_CMD setting as well as any additional switches the tool may need. GBS
will substitute the appropriate value for the format specifiers prior to executing the
extract tool. Refer to the table below for the supported format specifiers.

Table 3.2: Extract Tool Format Specifiers

%D Extraction directory
%P Prerequisite
%T GBS temporary directory
%Y Location Software Set repository

3.1.2 Toolchain Definitions

The Toolchain.mk file defines which toolchain to use and where it can be found. When
a Software Set is created, the build system uses a certain scheme where specific parts of
the toolchain can be found. GBS assumes that the “target triplet”, which identifies the
toolchain, is encoded in the base directory of the toolchain. The target triplet follows
the convention <cpu-vendor-os> and is the last element in the base directory (see the
example earlier in this chapter where a Software Set is created). The target triplet is
also assumed to be encoded in the name of certain toolchain executables.

Another important issue is the presence of a “sys-root” directory which a.o. holds
libraries and header files for the target installation. The internal layout of the sys-
root directory depends on the toolchain. If your toolchain uses a different scheme you
obviously need to adjust the Toolchain.mk file. The settings below can be found in the
Toolchain.mk file; defaults are in parenthesis.

• GBS_TC_TRIPLET (last element of GBS_TC_LEVEL)

String identifying the toolchain to be used. This is usually in the form of a target
triplet.

• GBS_TC_LEVEL (value of “R” parameter)

Base directory of toolchain. The value of this setting is set by the “R” parameter
of the gbs program when a Software Set is created.

3.1. CREATING A SOFTWARE SET 13

• GBS_TC_BINDIR (<GBS_TC_LEVEL>/bin)

Directory where user-executables of toolchain are kept.

• GBS_TC_SYSROOT (<GBS_TC_LEVEL>/<GBS_TC_TRIPLET>/sys-root)

Directory where the sys-root of the toolchain is located.

• CC (<GBS_TC_TRIPLET>-gcc)

Filename of ‘C’ compiler executable.

• LD (<GBS_TC_TRIPLET>-ld)

Filename of linker executable.

• AR (<GBS_TC_TRIPLET>-ar)

Filename of archiving executable.

• AS (<GBS_TC_TRIPLET>-as)

Filename of assembler executable.

• CPP (<GBS_TC_TRIPLET>-cpp)

Filename of preprocessor executable.

• CXX (<GBS_TC_TRIPLET>-g++)

Filename of C++ compiler executable.

• RANLIB (<GBS_TC_TRIPLET>-ranlib)

Filename of archive index generator.

• NM (<GBS_TC_TRIPLET>-nm)

Filename of executable for listing object file symbols.

• STRIP (<GBS_TC_TRIPLET>-strip)

Filename of executable for removing symbols from object files.

• OBJDUMP (<GBS_TC_TRIPLET>-objdump)

Filename of executable for listing object file information.

3.1.3 Software Set Prerequisites

When a Software Set depends on files provided by another Software Set, you can specify
a prerequisite in the Defines.mk file of the Software Set. A prerequisite simply refers to
the name of another Software Set image. Typically, the files needed from a prerequisite
are library files and header files.

If a prerequisite is found, the build system extracts its contents to the sub-directory
PRQ.DIR in the Software Set’s source directory. Each Software Set that is specified as a

14 CHAPTER 3. DEFINING A NEW SOFTWARE SET

prerequisite is extracted to this directory. Extracting the prerequisites is performed just
prior to the init phase of a build, and is fully an internal operation of the build system.
The end-user must, however, specify the Software Set extract tool in the Defines.mk

file (see EXTRACT_CMD). The extract tool enables the build system to actually extract the
contents of a prerequisite.

It is important to emphasize that the build system considers the prerequisites to be
Software Set images, not targets to be built before continuing with the current build.
This means the build system will not initiate a build for any of the prerequisites. If a
prerequisite is not available, the build will fail.

As a convenience, the build system automatically adds search paths to the library
files and header files which were (presumably) extracted from the prerequisite. These
“extra” search paths are employed during the build phase of a build. In relation the
Software Set prerequisites, the build system adds the following search paths:

• Library files

– <swset_source>/PRQ.DIR/lib

– <swset_source>/PRQ.DIR/usr/lib

• Header files

– <swset_source>/PRQ.DIR/usr/include

3.2 Populating a Software Set

The next task is to populate the Software Set with software packages. This can be done
by using the create command introduced in the previous section, and specify the “P”
parameter to give the name of a software package. The “R” parameter cannot be used in
this case, so it’s not possible to create a new Software Set and a software package at the
same time; this has to be done with two separate create commands. For convenience,
we cite the command’s syntax again:

create S=<swset_name> {R=<toolchain_dir> | P=<pkg_name>}

Adding a package to a Software Set with gbs is pretty straightforward as the following
example demonstrates. The example shows two packages being added to the AS800

Software Set (the termcap package and the bash package) where one package (bash)
depends on the other (termcap). The dependency aspect of this has to be edited manually
in the appropriate configuration file, though.

gbs create S=AS800 P=termcap

gbs create S=AS800 P=bash

Using a “strategic” name for a software package reduces maintenance since GBS will,
by default, use that name to automatically locate the package in the predefined locations
(refer to PACKAGE_LEVEL in Chapter 2).

3.2. POPULATING A SOFTWARE SET 15

3.2.1 Software Package Settings

Every software package added to a Software Set gets its own sub-directory within the
Software Set. Package-specific files can be stored there and one file that will always
be present is a configuration file for the package. This file is named Config.mk which
allows fine-grained control over how the package will (or should) be handled. Leaving
the file as-is will usually result in a standard build of the package. So, at this point we’ve
created a very minimal Software Set. Starting to build the packages in the Software Set
is discussed in the next chapter.

The format of the Config.mk file is a simple name/value pair structure. Despite the
extension of this file, it is not a Makefile.1 Adding comments or wrapping long lines is
supported in Config.mk and can be achieved by using the ‘#’ sign resp. ‘\<newline>’
sequence. There is basically no limit to the length a value can have in Config.mk.

Below is an enumeration of the settings used for configuring software packages. The
names of the settings in the Config.mk file are called qualifiers and they are always in
uppercase notation. The format of a setting is as follows:2

<qualifier> = <value>

• SRC

Specifies the origin of the package (local or remote). A local source is basically
some directory path, while a remote source can be an ftp site or a remote login. A
local source can be one of the following:

– <path>

– rcs://<path>

– sccs://<path>

– git+file://<host>/<path>

The following remote sources are supported:

– ftp://<host>/<path>

– http://<host>/<path>

– https://<host>/<path>

– scp://<host>/<path>

– sftp://<host>/<path>

– cvs://<repo-spec>

– svn://<host>/<path>

1Prior to GBS version 0.5, Config.mk actually was a Makefile which explains the extension.
2GBS version 0.4 and lower encoded the name of the package in the setting name. Refer to earlier

versions of the user manual for the format.

16 CHAPTER 3. DEFINING A NEW SOFTWARE SET

– git://<host>/<path>

– rcp://<host>/<path>

Note that secure protocols like https and scp may prompt the user for a password.
In such a case the build of the package will stall until a password has been entered.

This setting is optional and works in conjunction with the setting PACKAGE_LEVEL.
If the SRC qualifier is used for a package, the specified source will be searched before
the sources under PACKAGE_LEVEL.

• NAM

Name of package or resource. Usually the name of the package is derived automat-
ically by GBS, but this qualifier allows one to deviate from that behaviour. This
may be necessary if there’s an upper- or lowercase discrepancy in the filename, or
if the build system cannot use wildcards in the filename to locate the package. The
NAM qualifier is used to circumvent automatic name selection by allowing the exact
name of the file or resource to be specified.

Revisions and labels used by version control systems are also supported by the NAM

qualifier. In this case the revision or the label is a suffix of the name enclosed in
braces (e.g., name{rev1-2}).

If the NAM qualifier is used, the VER qualifier is ignored.

• VER

Version of package to use. The latest available version is automatically selected if
VER is not specified.

• OPT

Set certain build system options to control the build of this package alone. See the
GBS_OPT setting in Chapter 2 for a list of available options. Options set at package
level take precedence over options set at Software Set level and build system level.
Only listed options overwrite their counterpart in GBS_OPT or SWSET_OPT.

• DEP

List of package names (within the Software Set) this package depends on. The
package names correspond to the name given when the package configuration was
added to the Software Set. It’s important to realize that a dependency is not solely
determined by another package’s header files or libraries, but may also include
the presence of, for example, a configuration file on the target installation. This
means you have to take all aspects of a possible dependency into account, up to
its Deploy phase. However, it’s probably not needed to go as far as considering
runtime dependencies for this setting; limitting yourself to build-time dependencies
is usually sufficient. Refer to Section 6.1 on how to obtain the package names of a
Software Set.

3.3. COPYING A SOFTWARE SET 17

• CFG

This qualifier holds the options used to configure the package. By default, the
options are passed to the ./configure script of the package’s build system. The
value of CFG is passed unmodified to the build phases (refer to Section 1.2) and
from here it’s evaluated once before the configuration options are passed to the
./configure script. This allows the user to specify configuration options for the
CFG qualifier in the exact same manner as one would enter them on the command
line. There’s one exception you have to take into account here: You cannot use
single quotes to group options or preserve the literal meaning of words, you must
use double quotes and/or backslashes.

• CPL

This qualifier may list options for the compiler to allow a finer control over the
generated code. The main purpose is to pass debug or optimization flags to the
compiler. If not specified, the build reverts to the default flags of the package. The
build system does not evaluate the CPL setting.

Note that this option is currently only passed to the ‘C’ compiler.

• REM

The REM qualifier gives the user the opportunity to add remarks to a package
definition. The value of this setting is only used when listing package details and
may act as a reminder for matters to watch out for when working with the package.

3.3 Copying a Software Set

As mentioned earlier in this chapter, there are two other commands which can create a
new Software Set. These are the clone command and the shadow command, and their
syntax is as follows:

clone S=<source_swset_name>

D=<new_swset_name>

[R=<toolchain_dir>]

shadow S=<source_swset_name>

D=<new_swset_name>

[R=<toolchain_dir>]

Both commands take the name of a “source” Software Set (i.e., the original one) and
the name of the new Software Set to create. Optionally, a different toolchain can be
specified for the new Software Set. If omitted, the toolchain of the “source” Software Set
is used.

The difference between the two commands is that the clone command creates an
independent copy of the “source” Software Set (a snapshot) after which each Software

18 CHAPTER 3. DEFINING A NEW SOFTWARE SET

Set essentially evolves in its own way. The shadow command on the other hand always
follows the configuration of the “source” Software Set except that it uses its own toolchain
and administrative settings. The main purpose of the shadow command is to provide an
easy way to support different processors for the same target system. As a precaution,
GBS will not allow you to add (or remove) packages from a shadowed Software Set which,
in actuality, would alter the “source” Software Set.

Chapter 4

Generating Software Set Contents

In the previous chapter a Software Set was created with two software packages. Those
were merely definitions, no package was retrieved or build. This chapter discusses how the
software installation for the target system is created from the Software Set configuration.
The build system has two commands for this: A setup command and a build command.
The commands have the following syntax:

setup S=<swset_name>

build S=<swset_name> [P=<pkg_name>]

The purpose of the setup command is to prepare the Software Set for the build
operation. This could for example include installing the ‘C’ library and header files from
the toolchain into the target installation. The setup command takes care of executing
the Init phase of the build, but the actual implementation of that phase is user-defined
(see Section 7.3).

The command below initializes the AS800 Software Set introduced in the previous
chapter.

gbs setup S=AS800

Usually, running the setup command is only necessary for the first build of a Software
Set to ensure the Software Set is “ready” for the build. This includes the case where the
entire target installation has been erased.

The build command starts generating the actual contents of the Software Set. The
build system runs through the build phases (see Chapter 1) for the software packages
within the Software Set. After all packages have been built, the build system executes
the Finalize phase which provides the opportunity to wrap-up the target installation.
The implementation of this phase is also user-defined, but typically includes fixing access
rights on files, stripping debug symbols etc (see Section 7.4). Note that the build

command can also be used to build an individual package (including its dependencies).

19

20 CHAPTER 4. GENERATING SOFTWARE SET CONTENTS

In that case, the Finalize phase is not executed; the Finalize phase is only executed for
full builds.

The following two examples build both the entire AS800 Software Set. Remember
that the Software Set holds only two software packages in this example, termcap and
bash. Since termcap is a dependency of bash, it is automatically build (and installed)
when bash is build.

gbs build S=AS800

gbs build S=AS800 P=bash

As the build of the Software Set progresses, messages about the build system’s ac-
tivities may be output to the terminal or stored in a log file. If a log file is used to
collect messages, then each build phase is logged to a separate file where the build phase
number is encoded in the filename (Section 1.2 enumerates the build phase numbers).
The log files along with various administrative files are stored in a hidden sub-directory
of a software package’s source directory. For example, the log messages of build phase 0
(Import) of the package bash in Software Set AS800 has the following pathname:

<SOURCE_LEVEL>/AS800/bash/.gbs/BUILD_PHASE_0.log

A log file may also have the extension log.gz if the build has been configured to
compress log files.

In case the build fails, the log files may provide clues as to what the cause of the
failure might be. After the problem is (supposedly) fixed, the build command can be
retried. The build system will pick up where it failed the last time and continues the
build. Dependencies throughout the Software Set are always taken into account, so GBS
may rebuild more after the problem has been fixed.

Chapter 5

Creating a Software Set Image

Once a Software Set has been build, it’s possible to store all files of the target installation
in a single image file. This image file can then be used to distribute or archive a particular
build of the Software Set.

GBS does not enforce how an image file is created, but it does allow you to specify
a tool which knows how to create the image. This tool is specified in the Defines.mk

file of a Software Set configuration and can be executed by using the image command
of gbs. Details on how to specify an image tool for your Software Set can be found in
Section 3.1.1.

The image command basically only requires the name of the Software Set in order to
create an image. The syntax of the command is:

image S=<swset_name> [I=<image_file>]

The optional parameter I specifies the pathname of the image file which consists of
an optional directory and a filename. The rules that apply to the IMAGE_FILE setting in
the Defines.mk file (see Section 3.1.1), also apply to the parameter I. However, if the
parameter I is specified, it takes precedence over the IMAGE_FILE setting.

As an example we’ll execute the image command for the AS800 Software Set and first
specify the image file on the command line. This will create the file AS800.img in the
current directory. Next, we’ll omit parameter I which causes GBS to use the image file
specified in the Defines.mk file (see below). The name of the image file is not specified in
Defines.mk. GBS now formats a default filename which, in this case, will be AS800-0.1

(the Software Set ID combined with the version). The image file will be located in the
current directory.

gbs image S=AS800 I=AS800.img

gbs image S=AS800

Snippet from the Defines.mk file:

21

22 CHAPTER 5. CREATING A SOFTWARE SET IMAGE

SWSET_ID := AS800

SWSET_VER := 0.1

...

IMAGE_FILE :=

IMAGE_CMD := gbsswim -c -d %R -f %I

We’ll conclude this chapter and the previous 2 chapters with a schematic depicting
the course of events when creating and building a new Software Set (see Figure 5.1). The
figure also shows when certain data is created or needed by the build system.

23

setup

(package)

create

(swset)

create

swset

config

scripts
sinit

build

image

image file

rootfs tree

sdone
scripts

pdefs
configs

Figure 5.1: Software Set Build Flow

24 CHAPTER 5. CREATING A SOFTWARE SET IMAGE

Chapter 6

Software Set Maintenance

GBS provides some additional commands to ease maintenance of the Software Sets.
Among others, these commands enable retrieving information about a specific Software
Set or software package, or cleaning up files generated at some point of the build.

6.1 Retrieving Information

There are two commands for retrieving information from the build system, the list

command and the pref command. Their syntax is as follows:

list [S=<swset_name> [P=<pkg_name>]]

pref

6.1.1 list Command

Without any parameters the list command outputs a concise overview of the available
Software Sets. The Software Set names in the output can be used for commands requiring
a Software Set name. Refer to Table 6.1 for the output of the Software Set examples
part of the GBS distribution.

The list command also accepts a Software Set parameter. In this case, the command
outputs details about the Software Set. This includes items like the Software Set’s
version, the toolchain being used, software packages contained in the Software Set etc.
Table 6.2 shows the output for the AS800 Software Set including an explanation of the
various fields.

If a software package parameter is added to the list command, details about the
package as configured in the Software Set, are output. This includes the version of the
software package, its source, build options etc. The name of the software package can
be retrieved from the Software Set details. In Table 6.3 the output is shown for package
bash.

25

26 CHAPTER 6. SOFTWARE SET MAINTENANCE

Table 6.1: Output Software Set List

Available Software Sets

NAME DESCRIPTION VERSION

------------ -- -------
AS800 Software Set example for user guide 0.1

SWSET-1 Simple Software Set test 0.1

SWSET-2 Software Set test with repos 0.1

SWSET-3A Software Set prerequisite example (application) 0.1

SWSET-3B Software Set prerequisite example (library) 0.1

1

1 List of available Software Set configurations, one configuration per line.

Table 6.2: Output Software Set Details

Software Set Details

Name: AS800

ID: AS800

1

Version: 0.1

Description: Software Set example for user guide

2

Shadow Copy: No 3

Toolchain: alphaev56-gomtuu-linux-gnu 4

Config Directory: /home/arthur/tmp/gbs/examples/AS800

Source Directory: /home/arthur/tmp/gbs/src/AS800

Rootfs Directory: /home/arthur/tmp/gbs/rootfs/AS800

5

Packages Defined: bash run-parts termcap (3) 6

Excluded Packages: <none> (0) 7

Prerequisites: <none>

Repo. Location: <none>

8

Image File: <default>

Image Tool: gbsswim -c -d %R -f %I

Extract Tool: <none>

9

1 The Name field indicates the basename of the directory where this Software Set
configuration resides. The ID field corresponds to the SWSET_ID setting of the
Software Set.

2 User-defined version and description of this Software Set. These two fields corre-
spond to the SWSET_VER resp. SWSET_DESC setting.

3 Indicates whether or not the Software Set “shadows” the configuration of another
Software Set. If this is the case, the name of that other Software Set is displayed.

6.1. RETRIEVING INFORMATION 27

The AS800 Software Set is not a shadow copy of another Software Set hence the
word “No” is being displayed.

4 This field specifies the target triplet that is used for the Software Set. The target
triplet determines which toolchain the build system will use for building packages
(see also Section 3.1.2).

5 Of these three fields the “Config Directory” is always set. Its value shows the base
location of the Software Set configuration. The field “Source Directory” indicates
the location where the extracted sources of the Software Set are kept. This is
the base location where the packages of a Software Set are extracted and built.
Finally, the field “Rootfs Directory” shows the location where the Software Set is
being installed. The fields “Source Directory” and “Rootfs Directory” will only show
a directory location when a build of the Software Set has occurred.

6 Alphabetically sorted list of packages included in the Software Set. The packages
on this list will be included in the build. If no packages are included for this build,
the placeholder “<none>” is displayed. Either way, the list is always terminated
with the number of included packages enclosed in parenthesis.

7 Alphabetically sorted list of packages excluded from the Software Set. The packages
on this list will not be included in the build. Querying details about packages on
this list is still possible because the configuration of these packages is available
nonetheless. If no packages are excluded, the placeholder “<none>” is displayed.
Again, the list is always terminated with the number of excluded packages enclosed
in parenthesis.

8 These two fields are related to dependencies between Software Sets. If the Software
Set requires the availability of another Software Set then the “Prerequisites” field
lists the filename of those other Software Sets (in alphabetical order). If there are
no prerequisites for this Software Set, the placeholder “<none>” is shown. The field
“Repo. Location” specifies the location where the prerequisites reside. If unused,
the placeholder “<none>” is shown. Whether or not the field “Repo. Location” is
needed depends entirely on how the prerequisites are retrieved or stored. See also
Section 3.1.3 for more information on prerequisites.

9 The “Image File” field lists the filename to use when GBS creates a Software Set
image. If a specific filename was not defined, then the placeholder “<default>”
will be shown. This means the build system may format a filename for the im-
age using a default scheme. The “Image Tool” and “Extract Tool” fields specify
the command for creating resp. extracting a Software Set image. If undefined,
“<none>” is printed. These three fields directly correspond to the Software Set
settings IMAGE_FILE, IMAGE_CMD, and EXTRACT_CMD (see Section 3.1.1).

28 CHAPTER 6. SOFTWARE SET MAINTENANCE

Table 6.3: Output Package Details

Software Package Details

Name: bash

Version: <latest>

1

Pref. Source: Build System 2

Config Directory: /home/arthur/tmp/gbs/examples/AS800/pdefs/bash

Build Directory: /home/arthur/tmp/gbs/src/AS800/bash

3

Status: In Software Set 4

Last Build at: 2020-03-14 17:34:28+01:00

Build Time: 00:05:13

5

Result: Build Successful 6

Dependencies: termcap (1)

Provides: <none> (0)

7

Conf. Options: --prefix=/usr --exec-prefix=

--infodir=\${prefix}/share/info

--mandir=\${prefix}/share/man --disable-multibyte

--disable-net-redirections --disable-restricted

--enable-separate-helpfiles --disable-mem-scramble

--disable-profiling --disable-nls

8

Remarks: <none> 9

1 The first field, “Name”, is simply the name of the package for which information
is being displayed. The “Version” field displays the package version to use or the
exact filename of the package. In the latter case, the text “N/A, using file” is output
followed by the filename of the package. The filename corresponds to the package
setting NAM (see Section 3.2.1). If a version number is indicated by this field, it can
be a literal version number or the placeholder “<latest>” (see also package setting
VER, Section 3.2.1).

2 This field shows from where the package is or will be retrieved. It may show the
exact location or only an indication. If the field shows the text “Build System” it
means GBS will only use the configuration setting PACKAGE_LEVEL to locate the
package (see Chapter 2). If an exact location is displayed, then GBS prefers that
location over the configuration setting PACKAGE_LEVEL.

3 These two fields specify the base location where the package configuration resides
and where the package is being built. The “Build Directory” field will show the
placeholder “<non-existent>” if no previous build of this package has been per-
formed yet.

4 The status of a package indicates whether or not the package will be included in a
build of the Software Set it is part of. If this is the case, the text “In Software Set”
is shown else the text “Excluded”.

6.2. EDITING CONFIGURATIONS 29

5 The field “Last Build at” displays the date and time when a build of the package
was last started. The date and time is displayed in RFC-3339 notation. The “Build
Time” field indicates the elapsed wall clock time since the build system began
building the package. The time is expressed in an amount of hours, minutes, and
seconds (colon-separated). Note that the presence of the “Build Time” field does
not necessarilly mean that the build was successful, it merely indicates the elapsed
time the build was started and when it stopped. If no build was performed for the
package then the text “N/A” is printed.

6 Displays the result of the last build of the package. There are 3 possible outcomes:
“Build Successful” (build of package was complete), “Build Incomplete” (build failed
prematurely), or “N/A” (no build yet).

7 Show dependency information about the package. The “Dependencies” field lists
the names of the packages that this package depends on. The “Provides” field on
the other hand lists which other packages depend on this package. Both lists are
alphabetically sorted and are always terminated by the number of packages listed
(enclosed in parenthesis). In case these two fields do not apply to the package, the
text “<none>” will be printed.

8 List of arguments used for configuring the package. These arguments are passed
to the configure.sh script. If no configure options were specified for the package
then “<none>” is displayed.

9 Important notes about this package that the maintainer wants to point out to. If
there are no such notes then “<none>” is printed.

6.1.2 pref Command

The purpose of the pref command is mainly a convenience. It lists the settings of
the build system (i.e., the GBS configuration file), so the end-user has a quick way of
determining where the Software Set configurations are located, where the build logging
is written, etc. Note that the pref command only takes the global GBS configuration
into account, settings at the level of a Software Set or a package are not considered.

6.2 Editing Configurations

When configuring packages or Software Sets it’s sometimes cumbersome to constantly
switch working directory or enter long directory paths. As a convenience, GBS provides
the vi command which lets the build system locate a configuration file and open it in an
editor. The command has the following syntax:

vi [S=<swset_name> [P=<pkg_name>]]

30 CHAPTER 6. SOFTWARE SET MAINTENANCE

The editor to invoke is determined by the variables VISUAL resp. EDITOR in the user’s
shell environment. The variable VISUAL takes precendence over the variable EDITOR. If
neither are defined, the build system uses a builtin default value.

Depending on the parameters specified, the vi command opens a configuration file(s)
from a different context. This means for example, that when a Software Set and a package
name is specified, the configuration file(s) of that specific package are opened. So, you’re
editing a configuration at package level. Omitting the parameter for the package results
in the configuration file(s) of the given Software Set being opened. Finally, when omitting
the Software Set parameter, the build system opens up its own configuration file(s).

6.3 Cleaning

Cleaning up files after the build of a Software Set exist in three different commands:
clean, realclean, and purge. In each case the syntax is the same:

clean S=<swset_name> [P=<pkg_name>]

realclean S=<swset_name> [P=<pkg_name>]

purge S=<swset_name> [P=<pkg_name>]

These three commands differ in their severity of removing files. If the software package
parameter is specified, the operation only affects the specified package otherwise all
packages in the Software Set are affected.

The clean command is the least sever kind of removing and will only remove the
build objects (typically ‘.o’ files and executables). In addition, any sources that have
been patched will be restored to their original state. The realclean command is like
the clean command but goes one step further: It will also remove administrative files
(log files, state files etc), as well as all the files generated by the package’s build system.
Finally, the purge is like the realclean command, but will also remove the source files
of the package. In this case, a software package(s) has to be re-imported before it can be
build again.

6.4 Removing Configurations

When the configuration of a software package or an entire Software Set is no longer
needed it’s possible to permanently erase it. GBS provides the command remove to delete
a configuration from the CONFIG_LEVEL directory. Obviously, this command should be
used with caution since configuration data cannot be reproduced by the build system, so
once removed it’s really gone. The syntax of the remove command is:

remove S=<swset_name> [P=<pkg_name>]

6.4. REMOVING CONFIGURATIONS 31

Removing a package from a Software Set also updates the configuration throughout
the rest of the Software Set. This is necessary if the package acts as a dependency
of another package. In this case the configuration of the depending package must be
updated.

In addition to removing configuration data, the remove command also removes the
source of a package or a Software Set from the source directory (SOURCE_LEVEL). The
target installation is never touched by the remove command.

It’s not possible to remove packages or the entire Software Set from within a shadowed
Software Set. The build system will not allow such an action to take place. In this case
you’ll have to execute the remove command from within the originating Software Set.

32 CHAPTER 6. SOFTWARE SET MAINTENANCE

Chapter 7

Customizing the Build

Thusfar the packages defined in a Software Set were built using default behaviour pro-
vided by GBS. However, you may encounter packages which require a different way of
building, so you need to be able to divert from GBS its default behaviour and implement
your own. What constitutes to default behaviour is described in Appendix B.

This chapter will discuss how to customize the build (or part of the build) of a
package. This can be applied to every package in a Software Set, so once you know how
to customize one package, you can customize any one of them. In addition to customizing
a package, this chapter will also discuss how to implement the Init phase, the Finalize
phase, and the Clean phase.

7.1 Software Set Directory Structure

Before adding custom scripts, you should know a thing or two about the directory struc-
ture of a Software Set so you can integrate your scripts in the build system.

The configuration directory of a Software Set is given by
<CONFIG_LEVEL>/<swset_name>, where CONFIG_LEVEL is defined in one of the configura-
tion files of GBS, and swset_name is the name you gave to your Software Set upon cre-
ation (see also Chapter 2 resp. Section 3.1). In the configuration directory of a Software
Set there are two files which have already been introduced in Chapter 3, Defines.mk
and Toolchain.mk. Also present are four directories which are named pdefs, sdone,
sinit, and user. The first directory, pdefs, is where the packages of the Software Set
are defined. For each package there is a directory under pdefs which contains definitions
for that particular package. Such a directory is referred to as the package’s definition
directory and is typically named after the package. It holds the Config.mk file for the
package as well as custom build scripts and patch files. However, only the Config.mk file
is mandatory, other files are added when necessary.

The directory sdone is meant to contain scripts for wrapping up the Software Set
(i.e., target installation) once all packages have been built. Directory sinit is similar to
the directory sdone except that the scripts in this directory are meant to be executed
after a Software Set is newly created (i.e., you had a clean target installation).

33

34 CHAPTER 7. CUSTOMIZING THE BUILD

Then there is the directory user. This directory is completely user-defined and can
therefore contain whatever is additionally required in building the Software Set. This is
typically the place to store static files which are copied to the target installation as-is.

In addition to the directories mentioned above, there may be a fifth, optional, direc-
tory in the Software Set configuration directory. If present, it’s named sdefault and
contains the default build phase scripts for the Software Set. Refer to Section 7.6 for
details.

In Figure 7.1 the general make-up of a Software Set directory is depicted.

7.1. SOFTWARE SET DIRECTORY STRUCTURE 35

<swset_name>

Defines.mk

Toolchain.mk

pdefs

<pkgA>

Config.mk

...

<pkgB>

Config.mk

...

...

[sdefault]

...

sdone

...

sinit

...

user

...

Figure 7.1: Software Set Directory Layout

36 CHAPTER 7. CUSTOMIZING THE BUILD

7.2 Build Phase Scripts

As mentioned in Section 1.2, the build of a package is divided into 7 phases. Behaviour
of each build phase is implemented in a separate shell script, each carrying a specific
filename. The filenames are fixed irrespective of whether they implement the default
behaviour or custom behaviour. The table below lists the exact filenames associated
with each build phase.

Table 7.1: Build Phase Script Names

Build Phase Script Name

Import import.sh
Patch patch.sh
Configure configure.sh
Build build.sh
Test test.sh
Install install.sh
Deploy deploy.sh

By providing a shell script with the proper filename and placing that script in the
definition directory of a package, the end-user instructs the build system to use that
particular script instead of its default counterpart. Note that this only applies to the
concerning package and build phase, other packages are not affected nor are you obliged
to provide custom scripts for other build phases. You re-implement what you deem
necessary. In addition, the build system also uses the custom script as a prerequisite
(in Makefile slang) in its build process for the package. This means that changes to a
custom script will trigger a rebuild of the package from the point of the corresponding
build phase.

The actual implementation of a custom script does not matter to the build system,
but it usually relates to original purpose of the build phase. The only requirement set
by the build system is the exit code of the script. The exit code determines whether or
not to continue the build and for your custom script you are responsible for returning an
appropriate exit code.

Table 7.2: Shell Script Exit Codes

Exit Code Meaning Build Progress

0 Success Continue
1 Execution error Abort
2 Usage error Abort

In order to assist in writing custom build scripts, GBS provides a number of support
functions which, a.o. allow retrieving packages, outputting messages, and managing

7.2. BUILD PHASE SCRIPTS 37

patches. Gaining access to these functions is achieved by simply “sourcing” the necessary
shell script(s) from the GBS installation in the custom script. Appendix D.1 lists the
available functions and a short description.

Another source of assistence useful when writing custom scripts comes in the form
of environment variables exported by the build system. Each time the build system
executes a build phase script (either custom or default), it has exported a number of
variables to the environment which are related to building a package. Some variables are
related to the overal build system, just common variables. Other variables are related to
building packages or even to the package currently being build. Refer to Appendix D.2,
Table D.6 for a list of environment variables related to the build phase.

In Appendix B an overview is given of the operations each of the default build phase
scripts performs. This should give an indication of whether or not you need to provide a
custom script(s) for a package.

We conclude this section with a simple example of a package which doesn’t come
with a build system, which means we must provide some custom scripts of our own. It
concerns the run-parts package from Debian. This package only contains a source file
and a man page, so we probably need to provide a custom script where we compile the
source file, another script for copying the executable and the man page to the target
installation, and finally a script which makes the necessary adjustments to the target
system such that run-parts can do its duties.

The first script—which compiles and links the executable—should be named build.sh

and is placed in the definition directory of run-parts. If run-parts would be part of our
AS800 Software Set which was created in Section 3.1, then the pathname of build.sh

would be as follows: <CONFIG_LEVEL>/AS800/pdefs/run-parts/build.sh. The source
code of the shell script is listed below.

Table 7.3: Build Script run-parts

. $GBS_SCRIPTS_LEVEL/environment.sh 1

env_all || exit 1 2

for dir in $SWSET_ROOTFS_LIB_LEVEL; do

ldflags="$ldflags -L$dir"

done

for dir in $SWSET_ROOTFS_INC_LEVEL; do

cppflags="$cppflags -I$dir"

done

3

jobs_opt=${PKG_JOBS:+-j$PKG_JOBS} 4

${MAKE:-make} $jobs_opt \

CC=$CC \

CFLAGS="$PKG_COPTS" \

LDFLAGS="$ldflags" \

CPPFLAGS="$cppflags" \

run-parts

5

38 CHAPTER 7. CUSTOMIZING THE BUILD

1 Include support functions in build script. The build environment variable GBS_SCRIPTS_LEVEL
points to the location of the script.

2 Check environment and create dump of environment. Abort build if environment
check failed.

3 These loops generate a list of library resp. header search paths used for compiling
and linking the run-parts executable. The variables SWSET_ROOTFS_LIB_LEVEL

and SWSET_ROOTFS_INC_LEVEL hold a list of directories (within the target installa-
tion) where libraries resp. header files are located.

4 Generate a command option for the make command which specifies the number of
build jobs to start when building the package. Setting the number of build jobs is
optional, so the build environment variable PKG_JOBS could be unset.

5 Use builtin rules of make to compile and link the executable run-parts. Search
paths, compiler, and compiler flag are passed to make through typical variables like
CC, CFLAGS etc.

The second script to add to run-parts’s definition directory should be named install.sh.
The script basically consists of a copy operation (see below).

Table 7.4: Install Script run-parts

. $GBS_SCRIPTS_LEVEL/environment.sh 1

dump_env

env_directories || exit 1

2

declare -r ubindir="$SWSET_ROOTFS_LEVEL/usr/bin"

declare -r man8dir="$SWSET_ROOTFS_LEVEL/usr/share/man/man8"

mkdirhier $ubindir || exit 1

mkdirhier $man8dir || exit 1

3

install -m755 run-parts $ubindir || \

fatal "run-parts: failed installing"

install -m444 run-parts.8 $man8dir || \

fatal "run-parts.8: failed installing"

4

1 Include support functions in install script. The build environment variable GBS_SCRIPTS_LEVEL
points to the location of the script.

2 Check directory-related environment variables and create dump of environment.
Abort installation if environment check failed.

3 Define and create installation directories for executable and man page. Abort
installation if directories could not be created. The function mkdirhier is a function
from the included shell script environment.sh.

7.2. BUILD PHASE SCRIPTS 39

4 Copy executable and man page of run-parts to the target installation. Should this
fail then the function fatal outputs the given message and aborts the installation.

The last script to add for run-parts is a script for the Deploy phase. The script
should be named deploy.sh and its function is to integrate the run-parts program with
the cron facility on the target. The source is shown below.

Table 7.5: Deploy Script run-parts

. $GBS_SCRIPTS_LEVEL/environment.sh 1

env_all || exit 1 2

declare -ri cron_gid=16 # group cron

declare -r runpart_dirs="cron.daily cron.weekly \

cron.monthly cron.yearly"

3

for dir in $runpart_dirs; do

dir="$SWSET_ROOTFS_LEVEL/etc/$dir"

mkdirhier $dir || exit 1

chmod 755 $dir

gbs_chown .$cron_gid $dir || true

done

4

install -m644 $PKG_CONFIG_LEVEL/user/crontab \

$SWSET_ROOTFS_LEVEL/var/adm

5

1 Include support functions in deploy script. The build environment variable GBS_SCRIPTS_LEVEL
points to the location of the script.

2 Check environment and create dump of environment. Abort deployment if envi-
ronment check failed.

3 Define two constants used elsewhere in the script.

4 Create cron job directories managed by run-parts on the target installation. The
directories are created under etc and are owned by the group indicated by number
16 (which is apparently the group number for the cron facility). Here the support
function gbs_chown is used to change ownership because it performs some common
error handling which keeps the deploy script compact.

5 Copy a crontab for run-parts to the target installation. This crontab file is lo-
cated in the defintition directory of run-parts (indicated by the build environment
variable PKG_CONFIG_LEVEL). (The destination directory may seem strange for a
crontab file, but that’s not relevant for this example.)

40 CHAPTER 7. CUSTOMIZING THE BUILD

7.3 Init Phase Scripts

The scripts of the Init phase are located in the sinit directory and are always user-
defined. Their execution is triggered by the setup command of GBS, so it’s an explicit
operation by the end-user. The build system executes the scripts in this directory in
alphanumerical order, so if execution order is important then you must enforce the desired
order by appropriately naming your scripts. Also note that the scripts must have their
execute permissions set; a script without execute permissions set is skipped as part of
the Init phase.

Implementing scripts for the Init phase is much the same as implementing build phase
scripts. GBS provides support functions and environment variables which can be used
in the script. Appendix D.1 lists the available support functions, while Table D.7 lists
the environment variables exported by the build system. It’s also important to take the
exit code of the script into account (refer to Table 7.2). Failure to do so may cause the
build to fail at an unexpected time.

We present one typical init script here. This script shall copy the sys-root of the
toolchain to the target installation. This is often necessary since packages are building
against some core libraries (and headers) provided by the toolchain.

Table 7.6: Init Script Copying sys-root

. $GBS_SCRIPTS_LEVEL/environment.sh 1

dump_env

env_directories || exit 1

2

readonly BASENAME=‘basename $0 2>/dev/null‘

msg "exec $BASENAME"

3

if test -d "$GBS_TC_SYSROOT"; then

msg "copying sys-root..."

cp -af $GBS_TC_SYSROOT/* $SWSET_ROOTFS_LEVEL

else

warn "no sys-root available"

fi

4

1 Include support functions in init script. The build environment variable GBS_SCRIPTS_LEVEL
points to the location of the script.

2 Check directory-related environment variables and create dump of environment.
Abort installation if environment check failed.

3 Define script name constant and echo to stdout.

4 Check if sys-root directory of toolchain exists which is indicated by the build en-
vironment variable GBS_TC_SYSROOT. If it does exist, we do a simple copy of the
sys-root to the target installation otherwise we emit a warning message.

7.5. CLEAN PHASE SCRIPTS 41

7.4 Finalize Phase Scripts

Scripts in the sdone directory are executed as part of the Finalize phase and are always
user-defined. The build system automatically runs through the Finalize phase when all
packages of a Software Set have been built, so it’s triggered by the build command.
However, this only applies to a full build of a Software Set, not to an incremental build
of individual packages. So, the Finalize phase will not run when you manually build up
until the last package in a Software Set.

Here too the scripts in the directory are executed in alphanumerical order, so you
need to re-arrange the script names if execution order is important. Also the access
permissions of the scripts must at least have the execute bits set; scripts without these
permissions are ignored by the build system.

The implementation of scripts for the Finalize phase is along the same lines as the
Init phase, except that the build environment variables exported by the build system
differ. For the Finalize phase the available variables are listed in Table D.7.

As a very simple example we have a script called 99_done.sh which outputs a message
stating that the build of the Software Set was successful. The numeric prefix “99” in the
script’s filename (hopefully) ensures the script will be executed last in the build.

Table 7.7: Finalize Script 99_done.sh

. $GBS_SCRIPTS_LEVEL/environment.sh

msg ""

msg "!! SOFTWARE SET COMPLETED !!"

msg ""

7.5 Clean Phase Scripts

Scripts for the clean phase can also be customized and are, just like build phase scripts,
package-specific. They are stored alongside those same build phase scripts in the defi-
nition directory of the package. The filename of the clean phase script is fixed (see the
table below).

Table 7.8: Clean Phase Script Names

Clean Phase Script Name

Clean clean.sh

The build system will execute the clean phase when the clean command is given.
Since the clean command is also triggered by the realclean command as well as the
purge command, the clean phase is effectively always executed when some cleaning op-
eration is involved.

Implementing a clean phase script works in the same manner as discussed before:

42 CHAPTER 7. CUSTOMIZING THE BUILD

You can use the support functions provided by the build system as well as exported
environment variables. In Appendix D.1 a list of support function can be found while the
environment variables related to the clean phase are listed in Appendix D.2, Table D.9.
In order to determine whether the default behaviour of the clean phase is sufficient for
your needs, check Appendix C.

The example we present here augments the custom build phase scripts introduced
earlier in this chapter (the run-parts package). Since this package lacked a build system
of its own, we need to provide a script for the clean phase so that run-parts is fully
integrate in GBS. We therefore create a script named clean.sh in the definition directory
of run-parts with the implementation depicted below.

Table 7.9: Clean Script run-parts

. $GBS_SCRIPTS_LEVEL/environment.sh

. $GBS_SCRIPTS_LEVEL/patch_common.sh

1

rm -f *.o run-parts 2

patch_restore 3

1 Include support functions in clean script. The build environment variable GBS_SCRIPTS_LEVEL
points to the location of the script.

2 Remove “build objects” and executable.

3 If there were files patched they are restored to their original state.

7.6 Replacing Default Build Phase Scripts

Sections 7.2 and 7.5 described how to provide your own script for a certain step in a
build or clean phase of a package. In absence of such a script, the build system will use
its default counterpart of the script. For each step in a build or clean phase, the build
system provides a default script. You may however, want to provide your own default
scripts for the build or clean phase such that your software packages can use these scripts
as their default. These scripts are stored in the directory sdefault of the Software Set
configuration directory. This means the scripts will only be used within the context of
the given Software Set.

Implementing your own set of default scripts is a matter of populating the sdefault

directory with all the scripts for the build and clean phase, you cannot implement part
of the default scripts. The same script names are used when providing per-package build
scripts (see Table 7.1 and 7.8).

Note that the sdefault directory is not created by GBS, so the end-user has to add
this directory to his Software Set when needed.

Appendix A

Usage of Executables

A.1 gbs

Usage: gbs [COMMAND [PARAMETER]...]

COMMAND

create - add new Software Set or package, <S>{<R>|<P>}

clone - duplicate existing Software Set, <S><D>[R]

shadow - follow or track existing Software Set, <S><D>[R]

remove - delete Software Set or package, <S>[<P>]

setup - prepare Software Set for build, <S>

build - build/update Software Set or package, <S>[P]

image - generate image file of Software Set, <S>[I]

clean - remove build objects of Software Set or package, <S>[P]

realclean - same as "clean" but also remove administrative files, <S>[P]

purge - same as "realclean" but also remove sourcecode, <S>[P]

vi - edit configuration, [<S>[P]]

list - show information about Software Sets or packages, [<S>[P]]

pref - show GBS configuration preferences

help - show this help and exit

version - show version and exit

PARAMETER

S Software Set definition: S=<name>

D Software Set definition (duplicate): D=<name>

P Package definition: P=<name>

I Image definition: I=<pathname>

R Toolchain root definition: R=<root>

43

44 APPENDIX A. USAGE OF EXECUTABLES

A.2 gbsswim

Usage: gbsswim <OPTIONS> <IMAGE>

OPTIONS

-c create image of Software Set in directory specified by "-d" option

-i install Software Set in image in directory specified by "-d" option

-t check image integrity

-d DIR use directory DIR (default: .)

-f force operation, don’t ask questions

-v be verbose

-h show this help and exit

-V show version and exit

Appendix B

Default Build Phase Scripts

In the following sections an overview is given about the behaviour of the default build
phase scripts which may be executed when a package is being built.

B.1 Import Script

The import script performs the following operations:

• Create dump of environment and verify build environment.

• Determine sources for retrieving package. Supported protocols for a package source
include:

1. /* – local path

2. ftp:// – ftp URL

3. http://, https:// – web URL

4. scp://, sftp:// – secure copy command

5. cvs:// – CVS repository

6. rcs:// – RCS revision group

7. sccs:// – SCCS project

8. svn://, svn+http://, svn+ssh:// – Subversion repository

9. git://, git+http://, git+ssh://, git+file:// – GIT repository

10. rcp:// – remote copy command

• Scan available sources for requested package. Scan for specific version of package
if version was specified, otherwise assume latest version.

• If package is located ensure it’s locally accessible.

45

46 APPENDIX B. DEFAULT BUILD PHASE SCRIPTS

• A package is assumed to be a tar archive (compressed or uncompressed) where the
first component of each filename in the archive indicates the “root” directory of the
package. This directory is stripped on extraction.

• Extract package in source directory of Software Set unless it’s already available.

B.2 Patch Script

This script performs the following operations:

• Create dump of environment and verify build environment.

• Scan directory patches in package’s definition directory and apply patches. The
following conditions apply:

1. Patch formats recognized:

– Context diff

– ed script

– Normal diff

– Unified context diff

2. Patch files are handled in alphanumerical order.

3. Patch files are allowed to reside in a sub-directory under patches.

4. The names of the files to be patched are stripped of one (1) prefix directory
(i.e., up to the first slash of the pathname is cut, including the slash itself).

5. Files to be patched are “secured” in the administrative directory of GBS (allows
restoration at a later time).

6. A successful patch operation is noted in the package’s journal.

7. Assume timestamps of diffs to be UTC.

B.3 Configure Script

The configure script expects to find a GNU ./configure script in the source directory
of the package. The following operations are performed:

• Create dump of environment and verify build environment.

• Add header/library search paths to CPPFLAGS resp. LDFLAGS variables.

• Set user-defined compiler flags (CFLAGS variable).

• Determine host and target system type.

• Execute ./configure script of package, if present. Host and target system, and
user-defined configuration options are passed to the ./configure script. CFLAGS,
CPPFLAGS, and LDFLAGS are exported to the shell environment.

B.4. BUILD SCRIPT 47

B.4 Build Script

This script expects a Makefile in the source directory of the package. Actually, the
filename Makefile, makefile, or GNUmakefile is accepted. The script performs the
following operations:

• Create dump of environment and verify build environment.

• Determine number of allowed build jobs.

• Run make command to start build of package.

B.5 Test Script

The purpose of the test script is currently a bit dubious because of cross-compiling.
However, it performs the following operations:

• Create dump of environment and verify build environment.

• Attempt to perform an integrity test of the package. The following targets of the
package’s Makefile are assumed to run the test-suite:

– test

– tests

– check

– checks

If one of these targets is defined in the Makefile, it’s executed.

B.6 Install Script

The install script performs the following operations:

• Create dump of environment and verify build environment.

• Run install target of package’s Makefile.

• Use variable DESTDIR to pass the root directory of target installation.

B.7 Deploy Script

This script performs the following operations:

• Create dump of environment and verify build environment.

48 APPENDIX B. DEFAULT BUILD PHASE SCRIPTS

Appendix C

Default Clean Phase Scripts

C.1 Clean Script

The clean script performs the following operations:

• Run clean or “thorough clean” target of package’s Makefile. Which target is
called, is determined by the environment variable PKG_CLEAN_MODE. This variable
supports 2 values:

– clean

– realclean

The value “clean” corresponds to the clean target of the Makefile. The value “real-
clean” corresponds to the Makefile target realclean or distclean, whichever one
exists in the Makefile. In both cases the –-keep-going flag of make is employed
to clean as much as possible.

• Any source files of the package that have been patched are restored.

49

50 APPENDIX C. DEFAULT CLEAN PHASE SCRIPTS

Appendix D

Build Environment

D.1 Support Scripts

D.1.1 Shell Environment

Source:

<GBS_SCRIPTS_LEVEL>/environment.sh

Table D.1: Shell Variables

Variable Meaning

WHERE String indicating the current build con-
text.

Table D.2: Shell Functions

Function Brief

env_all Verify all build phase related variables.
env_directories Verify whether build phase directory

variables are sane.
env_toolchain Verify whether build phase toolchain

variables are sane.
env_build_process Verify whether build process variables

are sane.
dump_env Produce a dump of the current shell en-

vironment.
is_cmd_available Check whether given command is

present on system.

Continued on next page

51

52 APPENDIX D. BUILD ENVIRONMENT

Table D.2: Shell Functions (Continued)

Function Brief

msg Output common message on standard
output channel.

warn Output warning message on standard
error channel.

error Output message on standard error
channel.

fatal Output message on standard error
channel and abort.

trim Remove leading and trailing whitespace
from string.

mkdirhier Create directory hierarchy.
gbs_chown Change ownership of file or directory.
fmt_lockfile Generate filename for a file lock.
get_mime_type Determine MIME type of file.
gbs_default_patch Call default “patch” script of GBS.
gbs_default_configure Call default “configure” script of GBS.
gbs_default_build Call default “build” script of GBS.
gbs_default_test Call default “test” script of GBS.
gbs_default_install Call default “install” script of GBS.
gbs_default_clean Call default “clean” script of GBS.

D.1.2 File Patching

Source:

<GBS_SCRIPTS_LEVEL>/patch_common.sh

Table D.3: File Patching Functions

Function Brief

patch_request Secure a file for patching.
patch_restore Restore file(s) that have been patched.
patch_set_mark Make patch note in journal.
patch_get_mark Return patch note from journal.

D.1.3 Package Handling

Source:

D.2. ENVIRONMENT VARIABLES 53

<GBS_SCRIPTS_LEVEL>/pkg_retrieval.sh

<GBS_SCRIPTS_LEVEL>/pkg_utils.sh

Table D.4: Package Handling Functions

Function Brief

fetch_local Retrieve file from local filesystem.
fetch_by_ftp Retrieve file through FTP session.
fetch_by_http Retrieve file through HTTP session.
fetch_by_ssh Retrieve file through SSH channel.
fetch_by_cvs Retrieve source code from CVS archive.
fetch_by_rcs Retrieve source code from RCS revision

group.
fetch_by_sccs Retrieve source code from SCCS

project.
fetch_by_svn Retrieve source code from Subversion

archive.
fetch_by_git Retrieve source code from GIT archive.
fetch_by_rcp Retrieve file through BSD “r”-copy

command.
fetch_update_journal Update fetch activities in journal of

current package.
find_latest_version Given a file pattern, locate the latest

version of a file.
extract_version Filter version number from filename.
extract_revision Filter revision from filename.

D.2 Environment Variables

Table D.5: Environment Variables GBS Executable

Variable Meaning

GBS_CONFIG Alternative GBS settings file (over-
rides system-wide gbs.conf and per-
sonal .gbs_conf file).

54 APPENDIX D. BUILD ENVIRONMENT

Table D.6: Environment Variables Build Phase Scripts

Variable Meaning

GBS_LEVEL Base directory of GBS files.
GBS_SCRIPTS_LEVEL Base directory of GBS support scripts.
GBS_TMPDIR Directory for temporary files.
GBS_SWSET Name of current Software Set.
GBS_OPT Build system options.
MAKE make executable.
GBS_PACKAGE_LEVEL Base directory of software depot.
GBS_THIS_MACHINE Architecture-vendor-OS string identify-

ing this host.
GBS_TC_TRIPLET Architecture-vendor-OS string identify-

ing toolchain.
GBS_PACKAGE_SOURCE_LIST List of local/remote package sources.
SWSET_CONFIG_LEVEL Base directory of Software Set’s config-

uration.
SWSET_SOURCE_LEVEL Base directory of Software Set’s

sources.
SWSET_ROOTFS_LEVEL Base directory of Software Set’s rootfs.
SWSET_ROOTFS_LIB_LEVEL List of “lib” dirs within Software Set’s

rootfs.
SWSET_ROOTFS_INC_LEVEL List of “include” dirs within Software

Set’s rootfs.
SWSET_USER_LEVEL Base directory of user-provided files.
SWSET_PACKAGE Name of current package.
SWSET_PACKAGE_VER Version of current package.
SWSET_PHASE Current build phase.
PKG_CONFIG_LEVEL Config directory of current package.
PKG_SOURCE_LEVEL Source directory of current package.
PKG_JOURNAL Summarized log of build.
PKG_JOBS Max. number of jobs when building

package.
PKG_CONFIGURE Package configuration options.
PKG_COPTS Package compilation options.

Table D.7: Environment Variables Init Phase Scripts

Variable Meaning

GBS_LEVEL Base directory of GBS files.

Continued on next page

D.2. ENVIRONMENT VARIABLES 55

Table D.7: Environment Variables Init Phase Scripts (Con-
tinued)

Variable Meaning

GBS_SCRIPTS_LEVEL Base directory of GBS support scripts.
GBS_TMPDIR Directory for temporary files.
GBS_SWSET Name of current Software Set.
GBS_OPT Build system options.
MAKE make executable.
GBS_TC_TRIPLET Architecture-vendor-OS string identify-

ing toolchain.
GBS_TC_LEVEL Base directory of toolchain to use for

Software Set.
GBS_TC_BINDIR Base directory of toolchain’s executa-

bles.
GBS_TC_SYSROOT Base directory of toolchain’s sys-root.
SWSET_CONFIG_LEVEL Base directory of Software Set’s config-

uration.
SWSET_SOURCE_LEVEL Base directory of Software Set’s

sources.
SWSET_ROOTFS_LEVEL Base directory of Software Set’s rootfs.
SWSET_USER_LEVEL Base directory of user-provided files.
SWSET_PHASE Current init phase.

Table D.8: Environment Variables Finalize Phase Scripts

Variable Meaning

GBS_LEVEL Base directory of GBS files.
GBS_SCRIPTS_LEVEL Base directory of GBS support scripts.
GBS_TMPDIR Directory for temporary files.
GBS_SWSET Name of current Software Set.
GBS_OPT Build system options.
MAKE make executable.
SWSET_CONFIG_LEVEL Base directory of Software Set’s config-

uration.
SWSET_SOURCE_LEVEL Base directory of Software Set’s

sources.
SWSET_ROOTFS_LEVEL Base directory of Software Set’s rootfs.
SWSET_USER_LEVEL Base directory of user-provided files.
SWSET_PHASE Current finalize phase.

56 APPENDIX D. BUILD ENVIRONMENT

Table D.9: Environment Variables Clean Phase Scripts

Variable Meaning

GBS_LEVEL Base directory of GBS files.
GBS_SCRIPTS_LEVEL Base directory of GBS support scripts.
GBS_TMPDIR Directory for temporary files.
GBS_SWSET Name of current Software Set.
GBS_OPT Build system options.
MAKE make executable.
SWSET_CONFIG_LEVEL Base directory of Software Set’s config-

uration.
SWSET_SOURCE_LEVEL Base directory of Software Set’s

sources.
SWSET_USER_LEVEL Base directory of user-provided files.
SWSET_PACKAGE Name of current package.
SWSET_PACKAGE_VER Version of current package.
SWSET_PHASE Current clean phase.
PKG_CONFIG_LEVEL Config directory of current package.
PKG_SOURCE_LEVEL Source directory of current package.
PKG_JOURNAL Summarized log of build.
PKG_CLEAN_MODE Intended thoroughness of cleaning.

Appendix E

MRO Identifiers

The tables presented in this appendix list the identifiers that are output when the GBS
option MRO is enabled. An MRO identifier corresponds to a piece of information that can
be output by the build system (e.g., the build directory of a package). The identifiers
cannot be queried on an individual basis. Instead, they are output with the regular GBS
commands for querying information about Software Sets and packages etc. The GBS
option MRO mentioned above just causes the output to be formatted differently. When
MRO is enabled, the output consist of simple name/value pairs using a colon as separator:

<identifier> ":" <value>

The tables E.1 to E.5 each related to a specific context of GBS. Table E.1 for example,
shows the MRO identifier that would be output when the GBS command version is
executed (and the MRO option was enabled). The result would resemble the following
output:

GOMTUU_BUILD_SYSTEM:Version 0.9

Table E.1: GBS Version Output

Identifier Corresponds to

GOMTUU_BUILD_SYSTEM Build system version.

Table E.2: GBS Preferences Output

Identifier Corresponds to

BASE_ROOTFS_DIRECTORY Build system setting ROOTFS_LEVEL.
BASE_SOURCE_DIRECTORY Build system setting SOURCE_LEVEL.

Continued on next page

57

58 APPENDIX E. MRO IDENTIFIERS

Table E.2: GBS Preferences Output (Continued)

Identifier Corresponds to

BASE_CONFIG_DIRECTORY Build system setting CONFIG_LEVEL.
PACKAGE_LOCATIONS Build system setting PACKAGE_LEVEL.
BUILD_SYSTEM_OPTIONS Build system setting GBS_OPT.
DEBUG_MODE Build system setting DEBUG.

Table E.3: Software Set Overview Output

Identifier Corresponds to

NAME Software Set name.
DESCRIPTION Software Set setting SWSET_DESC.
VERSION Software Set setting SWSET_VER.

Table E.4: Software Set Details Output

Identifier Corresponds to

NAME Software Set name.
ID Software Set setting SWSET_ID.
VERSION Software Set setting SWSET_VER.
DESCRIPTION Software Set setting SWSET_DESC.
SHADOW_COPY Software Set setting SWSET_REF.
TOOLCHAIN Software Set setting GBS_TC_TRIPLET.
CONFIG_DIRECTORY Base location Software Set configura-

tion.
SOURCE_DIRECTORY Base location Software Set sources.
ROOTFS_DIRECTORY Base location Software Set installation.
PACKAGES_DEFINED List of Software Set packages.
EXCLUDED_PACKAGES Software Set setting EXCLUDED.
PREREQUISITES Software Set setting SWSET_PRQ.
REPO__LOCATION Software Set setting SWSET_REPO.
IMAGE_FILE Software Set setting IMAGE_FILE.
IMAGE_TOOL Software Set setting IMAGE_CMD.
EXTRACT_TOOL Software Set setting EXTRACT_CMD.

59

Table E.5: Package Details Output

Identifier Corresponds to

NAME Package name.
VERSION Package setting VER.
PREF__SOURCE Package setting SRC.
CONFIG_DIRECTORY Location of package configuration.
BUILD_DIRECTORY Location where package is built.
STATUS Package is included/excluded from

Software Set.
LAST_BUILD_AT Date/time last build of package was

started.
BUILD_TIME Elapsed time for build.
RESULT Build result.
DEPENDENCIES Package setting DEP.
PROVIDES List of packages depending on this

package.
CONF__OPTIONS Package setting CFG.
REMARKS Package setting REM.

60 APPENDIX E. MRO IDENTIFIERS

Appendix F

Examples

This chapter presents some examples on how to use GBS and demonstrates certain
capabilities of the build system. The examples show which commands need to be executed
from the command line (indicated by ‘$’ prompt) and which files need to be edited. Note
that you may need to edit some files such they’ll match with the files in the example. The
examples are also included in the source distribution of GBS, in the directory examples.

For each example the following .gbs_conf file was used which is located in the user’s
home directory.

$ cat ~/.gbs_conf

DEBUG = no

ROOTFS_LEVEL = ${HOME}/tmp/gbs/rootfs

SOURCE_LEVEL = ${HOME}/tmp/gbs/src

CONFIG_LEVEL = ${HOME}/tmp/gbs/examples

PACKAGE_LEVEL = ${HOME}/PKG

As can be seen, all build system activity will occur from within the user’s (private)
tmp directory. The PKG directory is where most of the tarballs of the software packages
are kept.

61

62 APPENDIX F. EXAMPLES

F.1 AS800

This appendix shows the Software Set example “AS800” as it is used in the user guide.

Creating Software Set:

$ gbs create S=AS800 R=/opt/toolchains/alphaev56-gomtuu-linux-gnu

$

$ cat ~/tmp/gbs/examples/AS800/Defines.mk

SWSET_ID := AS800

SWSET_VER := 0.1

SWSET_DESC := Software Set example for user guide

SWSET_OPT := LOG=file CLEAN=no

IMAGE_CMD := gbsswim -c -d %R -f %I

$

$ cat ~/tmp/gbs/examples/AS800/Toolchain.mk

Toolchain.mk -- toolchain definitions

#

GBS_TC_TRIPLET := alphaev56-gomtuu-linux-gnu

GBS_TC_LEVEL := /opt/toolchains/alphaev56-gomtuu-linux-gnu

GBS_TC_BINDIR := $(GBS_TC_LEVEL)/bin

GBS_TC_SYSROOT := $(GBS_TC_LEVEL)/$(GBS_TC_TRIPLET)/sys-root

CC := $(GBS_TC_TRIPLET)-gcc

LD := $(GBS_TC_TRIPLET)-ld

AR := $(GBS_TC_TRIPLET)-ar

AS := $(GBS_TC_TRIPLET)-as

CPP := $(GBS_TC_TRIPLET)-cpp

CXX := $(GBS_TC_TRIPLET)-g++

RANLIB := $(GBS_TC_TRIPLET)-ranlib

NM := $(GBS_TC_TRIPLET)-nm

STRIP := $(GBS_TC_TRIPLET)-strip

OBJDUMP := $(GBS_TC_TRIPLET)-objdump

Populating Software Set:

$ gbs create S=AS800 P=bash

$ gbs create S=AS800 P=termcap

$ gbs create S=AS800 P=run-parts

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/bash/Config.mk

NAM =

SRC =

VER =

OPT =

DEP = termcap

CFG = --prefix=/usr --exec-prefix= \

--infodir=\${prefix}/share/info \

--mandir=\${prefix}/share/man --disable-multibyte \

--disable-net-redirections --disable-restricted \

--enable-separate-helpfiles --disable-mem-scramble \

--disable-profiling --disable-nls

CPL =

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/run-parts/Config.mk

F.1. AS800 63

NAM =

SRC =

VER =

OPT =

DEP =

CFG =

CPL = -g -O2

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/run-parts/build.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

env_all || exit 1

for dir in $SWSET_ROOTFS_LIB_LEVEL; do

ldflags="$ldflags -L$dir"

done

for dir in $SWSET_ROOTFS_INC_LEVEL; do

cppflags="$cppflags -I$dir"

done

jobs_opt=${PKG_JOBS:+-j$PKG_JOBS}

${MAKE:-make} $jobs_opt \

CC=$CC \

CFLAGS="$PKG_COPTS" \

LDFLAGS="$ldflags" \

CPPFLAGS="$cppflags" \

run-parts

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/run-parts/install.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

dump_env

env_directories || exit 1

declare -r ubindir="$SWSET_ROOTFS_LEVEL/usr/bin"

declare -r man8dir="$SWSET_ROOTFS_LEVEL/usr/share/man/man8"

mkdirhier $ubindir || exit 1

mkdirhier $man8dir || exit 1

install -m755 run-parts $ubindir || \

fatal "run-parts: failed installing"

install -m444 run-parts.8 $man8dir || \

fatal "run-parts.8: failed installing"

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/run-parts/deploy.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

env_all || exit 1

64 APPENDIX F. EXAMPLES

declare -ri cron_gid=16 # group cron

declare -r runpart_dirs="cron.daily cron.weekly cron.monthly cron.yearly"

for dir in $runpart_dirs; do

dir="$SWSET_ROOTFS_LEVEL/etc/$dir"

mkdirhier $dir || exit 1

chmod 755 $dir

gbs_chown .$cron_gid $dir || true

done

install -m644 $PKG_CONFIG_LEVEL/user/crontab $SWSET_ROOTFS_LEVEL/var/adm

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/run-parts/user/crontab

!nice(10)

%hourly 1 run-parts /etc/cron.hourly

%daily 2 1 run-parts /etc/cron.daily

%weekly 2 2 run-parts /etc/cron.weekly

%monthly 2 3 1 run-parts /etc/cron.monthly

0 0 1 1 * run-parts /etc/cron.yearly

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/run-parts/clean.sh

. $GBS_SCRIPTS_LEVEL/environment.sh

. $GBS_SCRIPTS_LEVEL/patch_common.sh

rm -f *.o run-parts

patch_restore

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/termcap/Config.mk

NAM =

SRC =

VER =

OPT =

DEP =

CFG = --prefix=/usr \

--enable-install-termcap \

--with-termcap=$SWSET_ROOTFS_LEVEL/etc/termcap

CPL = -g -O2

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/termcap/build.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

env_all || exit 1

for dir in $SWSET_ROOTFS_INC_LEVEL; do

cppflags="$cppflags -I$dir"

done

if test -n "$PKG_COPTS"; then

cflags_opt="CFLAGS=$PKG_COPTS"

fi

F.1. AS800 65

jobs_opt=${PKG_JOBS:+-j$PKG_JOBS}

${MAKE:-make} $jobs_opt CPPFLAGS="$cppflags" "$cflags_opt"

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/termcap/configure.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

. $GBS_SCRIPTS_LEVEL/patch_common.sh

env_all || exit 1

declare -i npatch=0

gbs_default_configure || exit 1

npatch=0

file="Makefile"

patch_request "$file"

case "$?" in

0) let ++npatch ;;

1) warn "$file: file already patched" ;;

2) fatal "$file: failed securing file for patching" ;;

esac

if test $npatch -gt 0; then

ed "$file" <<_EOF

H

,s@^\([[:blank:]]*AR[[:blank:]]*=[[:blank:]]*\).*@\1$AR@

,s@^\([[:blank:]]*infodir[[:blank:]]*=[[:blank:]]*\).*@\1\${prefix}/share/info@

,s@^\([[:blank:]]*oldincludedir[[:blank:]]*=[[:blank:]]*\).*@\1@

h

wq

_EOF

[$? -eq 0] || fatal "$file: patch failed"

fi

$

$ cat ~/tmp/gbs/examples/AS800/pdefs/termcap/install.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

dump_env

env_directories || exit 1

${MAKE:-make} prefix=$SWSET_ROOTFS_LEVEL/usr install

$

$ cat ~/tmp/gbs/examples/AS800/sinit/10_mkdirhier.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

readonly BASENAME=‘basename $0 2>/dev/null‘

readonly R=$SWSET_ROOTFS_LEVEL

dump_env

66 APPENDIX F. EXAMPLES

env_directories || exit 1

msg "$WHERE exec $BASENAME"

[-d "$R"] || { error "$WHERE rootfs directory not found: $R"; exit 1; }

msg "$WHERE checking root directory..."

[-d $R/bin] || mkdirhier $R/bin

[-d $R/etc] || mkdirhier $R/etc

msg "$WHERE checking /usr tree..."

[-d $R/usr] || mkdirhier $R/usr

[-d $R/usr/bin] || mkdirhier $R/usr/bin

[-d $R/usr/include] || mkdirhier $R/usr/include

[-d $R/usr/lib] || mkdirhier $R/usr/lib

[-d $R/usr/share] || mkdirhier $R/usr/share

msg "$WHERE checking /var tree..."

[-d $R/var] || mkdirhier $R/var

[-d $R/var/adm] || mkdirhier $R/var/adm

$

$ cat ~/tmp/gbs/examples/AS800/sinit/15_copy_sysroot.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

readonly BASENAME=‘basename $0 2>/dev/null‘

dump_env

env_directories || exit 1

msg "exec $BASENAME"

if test -d "$GBS_TC_SYSROOT"; then

msg "copying sys-root..."

cp -af $GBS_TC_SYSROOT/* $SWSET_ROOTFS_LEVEL

else

warn "no sys-root available"

fi

$

$ cat ~/tmp/gbs/examples/AS800/sdone/99_done.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

msg ""

msg "!! SOFTWARE SET COMPLETED !!"

msg ""

Building Software Set:

$ gbs setup S=AS800

$ gbs build S=AS800

Creating Software Set Image:

$ gbs image S=AS800 I=AS800.img

$

F.1. AS800 67

$ ls -l AS800.img

-rw-r--r-- 1 arthur arthur 46319616 Mar 14 17:04 AS800.img

68 APPENDIX F. EXAMPLES

F.2 SWSET-1

Creating Software Set:

$ gbs create S=SWSET-1 R=/opt/toolchains/alphaev56-gomtuu-linux-gnu

$

$ cat ~/tmp/gbs/examples/SWSET-1/Defines.mk

SWSET_ID := SWSET-1

SWSET_VER := 0.1

SWSET_DESC := Simple Software Set test

SWSET_OPT := LOG=cfile CLEAN=no

EXCLUDE := john

IMAGE_CMD := gbsswim -c -d %R -f %I

$

$ cat ~/tmp/gbs/examples/SWSET-1/Toolchain.mk

Toolchain.mk -- toolchain definitions

#

GBS_TC_TRIPLET := alphaev56-gomtuu-linux-gnu

GBS_TC_LEVEL := /opt/toolchains/alphaev56-gomtuu-linux-gnu

GBS_TC_BINDIR := $(GBS_TC_LEVEL)/bin

GBS_TC_SYSROOT := $(GBS_TC_LEVEL)/$(GBS_TC_TRIPLET)/sys-root

CC := $(GBS_TC_TRIPLET)-gcc

LD := $(GBS_TC_TRIPLET)-ld

AR := $(GBS_TC_TRIPLET)-ar

AS := $(GBS_TC_TRIPLET)-as

CPP := $(GBS_TC_TRIPLET)-cpp

CXX := $(GBS_TC_TRIPLET)-g++

RANLIB := $(GBS_TC_TRIPLET)-ranlib

NM := $(GBS_TC_TRIPLET)-nm

STRIP := $(GBS_TC_TRIPLET)-strip

OBJDUMP := $(GBS_TC_TRIPLET)-objdump

Populating Software Set:

$ gbs create S=SWSET-1 P=bash

$ gbs create S=SWSET-1 P=gomtuu-rc

$ gbs create S=SWSET-1 P=john

$ gbs create S=SWSET-1 P=ntp

$ gbs create S=SWSET-1 P=readline

$ gbs create S=SWSET-1 P=termcap

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/bash/Config.mk

NAM =

SRC =

VER =

OPT =

DEP = readline termcap

CFG = --prefix=/usr --exec-prefix= \

--infodir=\${prefix}/share/info \

--mandir=\${prefix}/share/man --disable-multibyte \

--disable-net-redirections --disable-restricted \

--enable-separate-helpfiles --disable-mem-scramble \

--disable-profiling --disable-nls \

F.2. SWSET-1 69

--with-installed-readline=$SWSET_ROOTFS_LEVEL/usr

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/gomtuu-rc/Config.mk

NAM = gomtuu-rc{11}

SRC = svn+http://alpha.gomtuu.net/repos/gomtuu-rc/trunk

VER =

OPT =

DEP =

CFG =

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/john/Config.mk

NAM =

SRC = ftp://alpha.gomtuu.net/pub/software/util

VER =

OPT =

DEP =

CFG = --prefix=/usr

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/ntp/Config.mk

NAM = ntp-4.2.6p5.tar.gz

SRC = http://archive.ntp.org/ntp4/ntp-4.2

VER =

OPT =

DEP =

CFG = --prefix=/usr --sysconfdir=/etc --disable-debugging \

--disable-all-clocks --enable-local-clock --disable-ipv6

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/readline/Config.mk

NAM =

SRC =

VER =

OPT =

DEP =

CFG = --prefix=/usr

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/termcap/Config.mk

NAM =

SRC =

VER =

OPT =

DEP =

CFG = --prefix=/usr

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-1/pdefs/termcap/install.sh

#!/bin/bash

${MAKE:-make} prefix=$SWSET_ROOTFS_LEVEL/usr \

70 APPENDIX F. EXAMPLES

infodir=$SWSET_ROOTFS_LEVEL/usr/share/info oldincludedir= install

must copy termcap file manually to rootfs:

install -m644 termcap.src $SWSET_ROOTFS_LEVEL/etc/termcap

$

$ cat ~/tmp/gbs/examples/SWSET-1/sinit/10_mkdirhier.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

BASENAME=‘basename $0 2>/dev/null‘

R=$SWSET_ROOTFS_LEVEL

echo "$WHERE exec $BASENAME"

if ! test -d "$R"; then

echo "$WHERE: rootfs directory not found: $R"

exit 1

fi

echo "$WHERE checking / tree..."

[-d $R/bin] || mkdir $R/bin

[-d $R/etc] || mkdir $R/etc

[-d $R/sbin] || mkdir $R/sbin

echo "$WHERE checking /usr tree..."

[-d $R/usr] || mkdir $R/usr

[-d $R/usr/bin] || mkdir $R/usr/bin

[-d $R/usr/include] || mkdir $R/usr/include

[-d $R/usr/lib] || mkdir $R/usr/lib

[-d $R/usr/share] || mkdir $R/usr/share

echo "$WHERE checking /var tree..."

[-d $R/var] || mkdir $R/var

[-d $R/var/adm] || mkdir $R/var/adm

Building Software Set:

$ gbs setup S=SWSET-1

$ gbs build S=SWSET-1

Creating Software Set Image:

$ gbs image S=SWSET-1 I=SWSET-1.img

$

$ ls -l SWSET-1.img

-rw-r--r-- 1 arthur arthur 50606592 Oct 10 17:49 SWSET-1.img

Cleaning Software Set:

$ gbs clean S=SWSET-1

F.3. SWSET-2 71

F.3 SWSET-2

Prepare RCS Revision Group:

$ mkdir /tmp/rcs_test

$ mkdir /tmp/rcs_test/RCS

$ cat ~/tmp/gbs/examples/SWSET-2/user/hellobuilders.c

#include <stdio.h>

int main(int argc, char **argv)

{

printf("Hello Builders!\n");

return 0;

}

$ cd /tmp/rcs_test

$ rcs ci -t-. -i ~/tmp/gbs/examples/SWSET-2/user/hellobuilders.c

Creating Software Set:

$ gbs create S=SWSET-2 R=/opt/toolchains/alphaev56-gomtuu-linux-gnu

$

$ cat ~/tmp/gbs/examples/SWSET-2/Defines.mk

SWSET_ID := SWSET-2

SWSET_VER := 0.1

SWSET_DESC := Software Set test with repos

SWSET_OPT := LOG=cfile CLEAN=no

EXCLUDE :=

$

$ cat ~/tmp/gbs/examples/SWSET-2/Toolchain.mk

Toolchain.mk -- toolchain definitions

#

GBS_TC_TRIPLET := alphaev56-gomtuu-linux-gnu

GBS_TC_LEVEL := /opt/toolchains/alphaev56-gomtuu-linux-gnu

GBS_TC_BINDIR := $(GBS_TC_LEVEL)/bin

GBS_TC_SYSROOT := $(GBS_TC_LEVEL)/$(GBS_TC_TRIPLET)/sys-root

CC := $(GBS_TC_TRIPLET)-gcc

LD := $(GBS_TC_TRIPLET)-ld

AR := $(GBS_TC_TRIPLET)-ar

AS := $(GBS_TC_TRIPLET)-as

CPP := $(GBS_TC_TRIPLET)-cpp

CXX := $(GBS_TC_TRIPLET)-g++

RANLIB := $(GBS_TC_TRIPLET)-ranlib

NM := $(GBS_TC_TRIPLET)-nm

STRIP := $(GBS_TC_TRIPLET)-strip

OBJDUMP := $(GBS_TC_TRIPLET)-objdump

Populating Software Set:

$ gbs create S=SWSET-2 P=alpha-utils

$ gbs create S=SWSET-2 P=git

$ gbs create S=SWSET-2 P=cvs

$ gbs create S=SWSET-2 P=rcs_test

$ gbs create S=SWSET-2 P=zlib

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/alpha-utils/Config.mk

NAM = alpha-utils{8}

72 APPENDIX F. EXAMPLES

SRC = svn+http://unimatrix.gomtuu.net/repos/alpha-utils/trunk

VER =

OPT =

DEP =

CFG = --prefix=/usr ac_cv_func_malloc_0_nonnull=yes

CPL = -g -Os

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/git/Config.mk

NAM = git{v2.2.0}

SRC = git://github.com/git/git.git

VER =

OPT =

DEP = zlib

CFG = --prefix=/usr --without-expat --with-zlib=$SWSET_ROOTFS_LEVEL/usr

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/git/configure.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

. $GBS_SCRIPTS_LEVEL/patch_common.sh

ar=$GBS_TC_TRIPLET-ar

cc=$GBS_TC_TRIPLET-gcc

ranlib=$GBS_TC_TRIPLET-ranlib

make configure

AR=$ar RANLIB=$ranlib CC=$cc ./configure $PKG_CONFIGURE

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/cvs/Config.mk

NAM = ccvs

SRC = cvs://:pserver:anonymous@cvs.sv.nongnu.org:/sources/cvs

VER =

OPT =

DEP =

CFG = --disable-server --enable-encryption cvs_cv_func_printf_ptr=yes

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/rcs_test/Config.mk

NAM = hellobuilders.c{1.1}

SRC = rcs:///tmp/rcs_test

VER =

OPT =

DEP =

CFG =

CPL =

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/rcs_test/build.sh

#!/bin/sh

make hellobuilders

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/rcs_test/install.sh

#!/bin/sh

install -m755 $PKG_SOURCE_LEVEL/hellobuilders $SWSET_ROOTFS_LEVEL/usr/bin

$

F.3. SWSET-2 73

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/rcs_test/clean.sh

#!/bin/sh

rm -f $PKG_SOURCE_LEVEL/hellobuilders

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/zlib/Config.mk

VER =

OPT =

DEP =

CFG = --prefix=/usr --shared

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/zlib/configure.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

. $GBS_SCRIPTS_LEVEL/patch_common.sh

for d in $SWSET_ROOTFS_LIB_LEVEL

do

ldflags="$ldflags -L$d"

done

for d in $SWSET_ROOTFS_INC_LEVEL

do

cppflags="$cppflags -I$d"

done

ar=$GBS_TC_TRIPLET-ar

cc=$GBS_TC_TRIPLET-gcc

ranlib=$GBS_TC_TRIPLET-ranlib

AR="$ar rc" RANLIB=$ranlib CC=$cc ./configure $PKG_CONFIGURE

if patch_request Makefile; then

ed -s Makefile << _EOF

,s@^[[:blank:]]*LDFLAGS[[:blank:]]*=[[:blank:]]*.*@& $ldflags@

/[[:blank:]]*CPP[[:blank:]]*=[[:blank:]]*.*/

.a

CPPFLAGS=$cppflags

.

,s@^[[:blank:]]*LIBS[[:blank:]]*=[[:blank:]]*.*@& libz.a@

wq

_EOF

fi

$

$ cat ~/tmp/gbs/examples/SWSET-2/pdefs/zlib/install.sh

#!/bin/sh

make prefix=$SWSET_ROOTFS_LEVEL/usr install

$

$ cat ~/tmp/gbs/examples/SWSET-2/sinit/10_mkdirhier.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

BASENAME=‘basename $0 2>/dev/null‘

74 APPENDIX F. EXAMPLES

R=$SWSET_ROOTFS_LEVEL

echo "$WHERE exec $BASENAME"

if ! test -d "$R"; then

echo "$WHERE: rootfs directory not found: $R"

exit 1

fi

echo "$WHERE checking /usr tree..."

[-d $R/usr] || mkdir $R/usr

[-d $R/usr/bin] || mkdir $R/usr/bin

[-d $R/usr/include] || mkdir $R/usr/include

[-d $R/usr/lib] || mkdir $R/usr/lib

[-d $R/usr/libexec] || mkdir $R/usr/libexec

[-d $R/usr/sbin] || mkdir $R/usr/sbin

[-d $R/usr/share] || mkdir $R/usr/share

echo "$WHERE checking /var tree..."

[-d $R/var] || mkdir $R/var

[-d $R/var/adm] || mkdir $R/var/adm

$

$ cat ~/tmp/gbs/examples/SWSET-2/sdone/99_done.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

echo "$WHERE Software Set completed"

Building Software Set:

$ gbs setup S=SWSET-2

$ gbs build S=SWSET-2

Checking Build Results:

$ ls -lR ~/tmp/gbs/rootfs/SWSET-2

<list of installed files>

Cleaning Software Set:

$ gbs clean S=SWSET-2

F.4. SWSET-3A 75

F.4 SWSET-3A

This example works in conjunction with example SWSET-3B. SWSET-3A provides a simple
main() function which calls a function from a library (archive) provided by SWSET-3B.

Prepare Application:

$ cat ~/tmp/gbs/examples/SWSET-3A/user/main.c

#include <stdio.h>

#include <libcal.h>

int main(int argc, char **argv)

{

printf("Calibrating system... ");

fflush(NULL);

prq_calibrate(62020);

printf("done\n");

return 0;

}

Creating Software Set:

$ gbs create S=SWSET-3A R=/opt/toolchains/alphaev56-gomtuu-linux-gnu

$

$ cat ~/tmp/gbs/examples/SWSET-3A/Defines.mk

SWSET_ID := SWSET-3A

SWSET_VER := 0.1

SWSET_DESC := Software Set prerequisite example (application)

SWSET_OPT := LOG=cfile CLEAN=no

SWSET_REPO := ~/tmp

SWSET_PRQ := SWSET-3B

EXCLUDE :=

IMAGE_FILE := %Y/%L

IMAGE_CMD := gbsswim -c -d %R -f %I

EXTRACT_CMD := gbsswim -i -d %D -f %Y/%P

$

$ cat ~/tmp/gbs/examples/SWSET-3A/Toolchain.mk

Toolchain.mk -- toolchain definitions

#

GBS_TC_TRIPLET := alphaev56-gomtuu-linux-gnu

GBS_TC_LEVEL := /opt/toolchains/alphaev56-gomtuu-linux-gnu

GBS_TC_BINDIR := $(GBS_TC_LEVEL)/bin

GBS_TC_SYSROOT := $(GBS_TC_LEVEL)/$(GBS_TC_TRIPLET)/sys-root

CC := $(GBS_TC_TRIPLET)-gcc

LD := $(GBS_TC_TRIPLET)-ld

AR := $(GBS_TC_TRIPLET)-ar

AS := $(GBS_TC_TRIPLET)-as

CPP := $(GBS_TC_TRIPLET)-cpp

CXX := $(GBS_TC_TRIPLET)-g++

RANLIB := $(GBS_TC_TRIPLET)-ranlib

NM := $(GBS_TC_TRIPLET)-nm

76 APPENDIX F. EXAMPLES

STRIP := $(GBS_TC_TRIPLET)-strip

OBJDUMP := $(GBS_TC_TRIPLET)-objdump

Populating Software Set:

$ gbs create S=SWSET-3A P=main

$

$ cat ~/tmp/gbs/examples/SWSET-3A/pdefs/main/Config.mk

NAM =

SRC =

VER =

OPT =

DEP =

CFG =

CPL = -g -O2

$

$ cat ~/tmp/gbs/examples/SWSET-3A/pdefs/main/import.sh

#!/bin/sh

cp $SWSET_USER_LEVEL/main.c $PKG_SOURCE_LEVEL

$

$ cat ~/tmp/gbs/examples/SWSET-3A/pdefs/main/build.sh

#!/bin/sh

for dir in $SWSET_ROOTFS_LIB_LEVEL; do

ldflags="$ldflags -L$dir"

done

for dir in $SWSET_ROOTFS_INC_LEVEL; do

cppflags="$cppflags -I$dir"

done

make CPPFLAGS="$cppflags" CFLAGS="$PKG_COPTS" \

LDFLAGS="$ldflags" LDLIBS="-lcal" main

$

$ cat ~/tmp/gbs/examples/SWSET-3A/pdefs/main/install.sh

#!/bin/sh

install -m755 $PKG_SOURCE_LEVEL/main $SWSET_ROOTFS_LEVEL/usr/bin

$

$ cat ~/tmp/gbs/examples/SWSET-3A/pdefs/main/clean.sh

#!/bin/sh

rm -f $PKG_SOURCE_LEVEL/main

$

$ cat ~/tmp/gbs/examples/SWSET-3A/sinit/10_mkdirhier.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

BASENAME=‘basename $0 2>/dev/null‘

R=$SWSET_ROOTFS_LEVEL

echo "$WHERE exec $BASENAME"

if ! test -d "$R"; then

echo "$WHERE: rootfs directory not found: $R"

exit 1

fi

F.4. SWSET-3A 77

echo "$WHERE checking /usr tree..."

[-d $R/usr] || mkdir $R/usr

[-d $R/usr/bin] || mkdir $R/usr/bin

echo "$WHERE checking /var tree..."

[-d $R/var] || mkdir $R/var

[-d $R/var/adm] || mkdir $R/var/adm

Building Software Set: (first attempt)

Without prerequisite SWSET-3B the build of SWSET-3A will initially fail. (If you skipped ahead
to SWSET-3B and created the Software Set image, then building SWSET-3A will succeed on the
first attempt.)

$ gbs setup S=SWSET-3A

$ gbs build S=SWSET-3A # futile

Building Software Set: (second attempt)

First, perform a build of SWSET-3B to create the Software Set image (see Appendix F.5), and
then try to build SWSET-3A again. The build should now succeed.

$ gbs setup S=SWSET-3A

$ gbs build S=SWSET-3A

Creating Software Set Image:

$ gbs image S=SWSET-3A

$

$ ls -l ~/tmp

-rw-r--r-- 1 arthur arthur 12288 Mar 7 17:28 SWSET-3A

-rw-r--r-- 1 arthur arthur 5632 Mar 7 17:25 SWSET-3B

Cleaning Software Set:

$ gbs clean S=SWSET-3A

78 APPENDIX F. EXAMPLES

F.5 SWSET-3B

This Software Set provides a library (archive) which is used in the previous example
(SWSET-3A).

Prepare Library:

$ cat ~/tmp/gbs/examples/SWSET-3B/user/calibrate.c

int prq_calibrate(int setpoint)

{

unsigned int gain = 1024;

unsigned int diff = 0;

int value = 0;

do {

/* value is measured... */

if (value < setpoint) {

value += gain; diff = setpoint - value;

}

else if (value > setpoint) {

value -= gain; diff = value - setpoint;

}

if (diff < gain) {

gain = (gain < 1 ? gain>>1 : 1);

}

} while (value != setpoint);

return 0;

}

$

$ cat ~/tmp/gbs/examples/SWSET-3B/user/libcal.h

int prq_calibrate(int setpoint);

Creating Software Set:

$ gbs create S=SWSET-3B R=/opt/toolchains/alphaev56-gomtuu-linux-gnu

$

$ cat ~/tmp/gbs/examples/SWSET-3B/Defines.mk

SWSET_ID := SWSET-3B

SWSET_VER := 0.1

SWSET_DESC := Software Set prerequisite example (library)

SWSET_OPT := LOG=cfile CLEAN=no

SWSET_REPO := ~/tmp

SWSET_PRQ :=

EXCLUDE :=

IMAGE_FILE := %Y/%L

IMAGE_CMD := gbsswim -c -d %R -f %I

EXTRACT_CMD :=

$

$ cat ~/tmp/gbs/examples/SWSET-3B/Toolchain.mk

Toolchain.mk -- toolchain definitions

#

F.5. SWSET-3B 79

GBS_TC_TRIPLET := alphaev56-gomtuu-linux-gnu

GBS_TC_LEVEL := /opt/toolchains/alphaev56-gomtuu-linux-gnu

GBS_TC_BINDIR := $(GBS_TC_LEVEL)/bin

GBS_TC_SYSROOT := $(GBS_TC_LEVEL)/$(GBS_TC_TRIPLET)/sys-root

CC := $(GBS_TC_TRIPLET)-gcc

LD := $(GBS_TC_TRIPLET)-ld

AR := $(GBS_TC_TRIPLET)-ar

AS := $(GBS_TC_TRIPLET)-as

CPP := $(GBS_TC_TRIPLET)-cpp

CXX := $(GBS_TC_TRIPLET)-g++

RANLIB := $(GBS_TC_TRIPLET)-ranlib

NM := $(GBS_TC_TRIPLET)-nm

STRIP := $(GBS_TC_TRIPLET)-strip

OBJDUMP := $(GBS_TC_TRIPLET)-objdump

Populating Software Set:

$ gbs create S=SWSET-3B P=libcal

$

$ cat ~/tmp/gbs/examples/SWSET-3B/pdefs/libcal/Config.mk

NAM =

SRC =

VER =

OPT =

DEP =

CFG =

CPL = -g -O2

$

$ cat ~/tmp/gbs/examples/SWSET-3B/pdefs/libcal/import.sh

#!/bin/sh

cp $SWSET_USER_LEVEL/calibrate.c $PKG_SOURCE_LEVEL

cp $SWSET_USER_LEVEL/libcal.h $PKG_SOURCE_LEVEL

$

$ cat ~/tmp/gbs/examples/SWSET-3B/pdefs/libcal/build.sh

#!/bin/sh

make CFLAGS="$PKG_COPTS" "libcal.a(calibrate.o)"

$

$ cat ~/tmp/gbs/examples/SWSET-3B/pdefs/libcal/install.sh

#!/bin/sh

install -m644 $PKG_SOURCE_LEVEL/libcal.h $SWSET_ROOTFS_LEVEL/usr/include

install -m644 $PKG_SOURCE_LEVEL/libcal.a $SWSET_ROOTFS_LEVEL/usr/lib

$

$ cat ~/tmp/gbs/examples/SWSET-3B/pdefs/libcal/clean.sh

#!/bin/sh

rm -f $PKG_SOURCE_LEVEL/libcal.a

rm -f $PKG_SOURCE_LEVEL/*.o

$

$ cat ~/tmp/gbs/examples/SWSET-3B/sinit/10_mkdirhier.sh

#!/bin/bash

. $GBS_SCRIPTS_LEVEL/environment.sh

BASENAME=‘basename $0 2>/dev/null‘

R=$SWSET_ROOTFS_LEVEL

80 APPENDIX F. EXAMPLES

echo "$WHERE exec $BASENAME"

if ! test -d "$R"; then

echo "$WHERE: rootfs directory not found: $R"

exit 1

fi

echo "$WHERE checking /usr tree..."

[-d $R/usr] || mkdir $R/usr

[-d $R/usr/include] || mkdir $R/usr/include

[-d $R/usr/lib] || mkdir $R/usr/lib

echo "$WHERE checking /var tree..."

[-d $R/var] || mkdir $R/var

[-d $R/var/adm] || mkdir $R/var/adm

Building Software Set:

$ gbs setup S=SWSET-3A

$ gbs build S=SWSET-3A

Creating Software Set Image:

$ gbs image S=SWSET-3B

$

$ ls -l ~/tmp

-rw-r--r-- 1 arthur arthur 5632 Mar 7 17:25 SWSET-3B

Cleaning Software Set:

$ gbs clean S=SWSET-3B

